scholarly journals Surface Integrity and Tool Wear Analysis on Turning of Copper-Nickel 70/30 ASTM B122 Alloy under Low Initial Lubrication

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4868
Author(s):  
Enrique García-Martínez ◽  
Valentín Miguel ◽  
Alberto Martínez-Martínez ◽  
María Carmen Manjabacas ◽  
Juana Coello

Traditional flood lubrication in machining processes is considered an unsustainable technique. In this paper, the low initial lubrication (LIL) technique is analysed during turning of cupronickel 70/30 alloy, in terms of surface roughness. A tribological analysis has been developed on a pin-on-disk tribometer comparing different lubrication systems, obtaining comparative results of friction and tool wear. It has been found that the tool wear is 73% lower in comparison to flood lubrication. LIL technique shows the ability to reduce the friction coefficient compared to dry machining and leads to improve tool wear in comparison with flood lubrication. The surface integrity evaluation of machined parts finds that the LIL technique can improve the surface roughness under specific machining conditions.

2011 ◽  
Vol 496 ◽  
pp. 176-181 ◽  
Author(s):  
Jan Madl ◽  
Vitezslav Razek ◽  
Vaclav Koutny ◽  
Jindrich Kafka

Precision machining of soft and hardened materials is a topic of high interest to substitute some traditional operations. This paper deals with some aspects of the precision machining of notches. All machining processes result in changes of surface layer properties. There are changes in residual stresses, in harness, changes in material structure etc. and also in surface accuracy and surface roughness. All these characteristics may affect fatigue cracks in machined parts.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110112
Author(s):  
Li Xun ◽  
Wang Ziming ◽  
Yang Shenliang ◽  
Guo Zhiyuan ◽  
Zhou Yongxin ◽  
...  

Titanium alloy Ti1023 is a typical difficult-to-cut material. Tool wear is easy to occur in machining Ti1023, which has a significant negative effect on surface integrity. Turning is one of the common methods to machine Ti1023 parts and machined surface integrity has a direct influence on the fatigue life of parts. To control surface integrity and improve anti-fatigue behavior of Ti1023 parts, it has an important significance to study the influence of tool wear on the surface integrity and fatigue life of Ti1023 in turning. Therefore, the effect of tool wear on the surface roughness, microhardness, residual stress, and plastic deformation layer of Ti1023 workpieces by turning and low-cycle fatigue tests were studied. Meanwhile, the influence mechanism of surface integrity on anti-fatigue behavior also was analyzed. The experimental results show that the change of surface roughness caused by worn tools has the most influence on anti-fatigue behavior when the tool wear VB is from 0.05 to 0.25 mm. On the other hand, the plastic deformation layer on the machined surface could properly improve the anti-fatigue behavior of specimens that were proved in the experiments. However, the higher surface roughness and significant surface defects on surface machined utilizing the worn tool with VB = 0.30 mm, which leads the anti-fatigue behavior of specimens to decrease sharply. Therefore, to ensure the anti-fatigue behavior of parts, the value of turning tool wear VB must be rigorously controlled under 0.30 mm during finishing machining of titanium alloy Ti1023.


2014 ◽  
Vol 989-994 ◽  
pp. 3331-3334
Author(s):  
Tao Zhang ◽  
Guo He Li ◽  
L. Han

High speed milling is a newly developed advanced manufacturing technology. Surface integrity is an important object of machined parts. Surface roughness is mostly used to evaluate to the surface integrity. A theoretical surface roughness model for high face milling was established. The influence of cutting parameters on the surface roughness is analyzed. The surface roughness decreases when the cutter radius increases, total number of tooth and rotation angular speed, while it increases with the feeding velocity. The high speed face milling can get a smooth surface and it can replace the grinding with higher efficiency.


2013 ◽  
Vol 554-557 ◽  
pp. 2093-2100 ◽  
Author(s):  
Domenico Umbrello

Machining of advancedaerospace materials have grown in the recent years although the hard-to-machinecharacteristics of alloys like titanium or nickel based alloys cause highercutting forces, rapid tool wear, and more heat generation. This paper presentsan experimental evaluation of machining ofInconel718alloy under dry conditions at varying of cutting speeds and feed rates.The influence of the cutting conditions on surface integrity was studied interms of surface roughness, affected layer, grain size variations and phasechanges/modification. Also, the machining process performance was evaluatedthrough the power consumption and tool-wear.


2013 ◽  
Vol 773-774 ◽  
pp. 339-347 ◽  
Author(s):  
Muhammad Yusuf ◽  
M.K.A. Ariffin ◽  
N. Ismail ◽  
S. Sulaiman

With increasing quantities of applications of Metal Matrix Composites (MMCs), the machinablity of these materials has become important for investigation. This paper presents an investigation of surface roughness and tool wear in dry machining of aluminium LM6-TiC composite using uncoated carbide tool. The experiments carried out consisted of different cutting models based on combination of cutting speed, feed rate and depth of cut as the parameters of cutting process. The cutting models designed based on the Design of Experiment Response Surface Methodology. The objective of this research is finding the optimum cutting parameters based on workpiece surface roughness and cutting tool wear. The results indicated that the optimum workpiece surface roughness was found at high cutting speed of 250 m min-1 with various feed rate within range of 0.05 to 0.2 mm rev-1, and depth of cut within range of 0.5 to 1.5 mm. Turning operation at high cutting speed of 250 m min-1 produced faster tool wear as compared to low cutting speed of 175 m min-1 and 100 m min-1. The wear minimum (VB = 42 μm ) was found at cutting speed of 100 m min-1, feet rate of 0.2 mm rev-1, and depth of cut of 1.0 mm until the length of cut reached 4050 mm. Based on the results of the workpiece surface roughness and the tool flank wear, recommended that turning of LM6 aluminium with 2 wt % TiC composite using uncoated carbide tool should be carried out at cutting speed higher than 175 m min-1 but at feed rate of less than 0.05 mm rev-1 and depth of cut less than 1.0 mm.


Author(s):  
Patricia Mun˜oz de Escalona ◽  
Paul G. Maropoulos

Surface finish is one of the most relevant aspects of machining operations, since it is one of the principle methods to assess quality. Also, surface finish influences mechanical properties such as fatigue behavior, wear, corrosion, etc. The feed, the cutting speed, the cutting tool material, the workpiece material and the cutting tool wear are some of the most important factors that affects the surface roughness of the machined surface. Due to the importance of the martensitic 416 stainless steel in the petroleum industry, especially in valve parts and pump shafts, this material was selected to study the influence of the feed per tooth and cutting speed on tool wear and surface integrity. Also the influence of tool wear on surface roughness is analyzed. Results showed that high values of roughness are obtained when using low cutting speed and feed per tooth and by using these conditions tool wear decreases prolonging tool life.


2010 ◽  
Vol 34-35 ◽  
pp. 1145-1148
Author(s):  
Quan Ren Zeng ◽  
Geng Liu ◽  
Lan Liu ◽  
Rui Ting Tong

Surface texture, as one of the typical surface integrity characteristics, plays a vital part in efficiently and systematically evaluating the surface integrity and relevant mechanical properties of machined parts. Commonly used 2D surface roughness parameters are formularized and discussed in this paper. And 3D characterization technique is also illustrated through measuring and describing a machined surface with an optical profiling system. The relationship between surface texture and the fatigue property of final machined parts are discussed by employing the quantity of effective stress concentration factor which could be expressed by the standard surface roughness parameters and measured averaged root radius of surface texture’s valleys. This research emphasizes the indispensable role of the surface texture in evaluating surface integrity and corresponding functional performance of machined parts.


Author(s):  
Wit Grzesik ◽  
Krzysztof Żak

This paper presents the state of surface integrity produced on hardened-high strength 41Cr4 steel after hard machining and finish ball burnishing. Surfaces machined by sequential machining processes were characterized using 2D and 3D surface roughness parameters. Moreover, detailed functionality of the generated surfaces was performed using a set of 3D functional roughness parameters. Among the characteristics of the surface layer, its microstructure, the distribution of microhardness and the residual stresses were determined. This investigation confirms that ball burnishing allows producing surfaces with lower surface roughness and better service properties than those generated by cubic boron nitride (CBN) finish hard turning operations.


2013 ◽  
Vol 572 ◽  
pp. 467-470 ◽  
Author(s):  
Jabbar Abbas ◽  
Amin Al-Habaibeh ◽  
Dai Zhong Su

Surface finish of machined parts in end milling operations is significantly influenced by process faults such as tool wear and tool holding (fixturing system). Therefore, monitoring these faults is considerably important to improve the quality of the product. In this paper, an investigation is presented to design the condition monitoring system to evaluate the surface roughness of the workpiece under effects of gradual tool wear and different types of the fixturing system. Automated Sensor and Signal Processing Selection (ASPS) approach is implemented and tested to determine the sensitivity of the sensory signals to estimate surface roughness under the variable conditions in comparison to surface roughness measurement device. The results indicate that the system is capable of detection the change and the trend in surface roughness. However, the sensitive features are found to be different based on the change in the fixturing system.


2021 ◽  
Author(s):  
Liang Tan ◽  
Changfeng Yao ◽  
Dinghua Zhang ◽  
Minchao Cui ◽  
Xuehong Shen

Abstract This paper investigates the effects of tool wear on the machined surface integrity characteristics, including the surface roughness, surface topography, residual stress, microhardness and microstructure, during ball-end milling of Inconel 718. Tool wear, tool lifetime, and cutting force are measured. In addition, a two-dimensional finite element-based model is developed to investigate the cutting temperature distribution in the chip–tool–workpiece contact area. Results show that the ball nose end mill achieves tool lifetime of approximately 350 min. The cutting forces increase sharply with a greater tool flank wear width, while the highest cutting temperature has a decreasing tend at a flank wear width of 0.3 mm. Higher tool flank wear width produces larger surface roughness and deteriorative surface topography. A high-amplitude (approximately −700 MPa) and deep layer (approximately 120 mm) of compressive residual stress are induced by a worn tool with 0.3 mm flank wear width. The surface microhardness induced by new tool is larger than that induced by worn tool. Plastic deformation and strain streamlines are observed within 10 mm depth beneath the surface. The results in this paper provide an optimal tool wear criterion which integrates the surface integrity requirements and the tool lifetime for ball-end finish milling of Inconel 718.


Sign in / Sign up

Export Citation Format

Share Document