scholarly journals Maximum Achievable N Content in Atom-by-Atom Growth of Amorphous Si-B-C-N Materials

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5744
Author(s):  
Jiri Houska

Amorphous Si-B-C-N alloys can combine exceptional oxidation resistance up to 1500 °C with high-temperature stability of superior functional properties. Because some of these characteristics require as high N content as possible, the maximum achievable N content in amorphous Si-B-C-N is examined by combining extensive ab initio molecular dynamics simulations with experimental data. The N content is limited by the formation of unbonded N2 molecules, which depends on the composition (most intensive in C rich materials, medium in B rich materials, least intensive in Si-rich materials) and on the density (increasing N2 formation with decreasing packing factor when the latter is below 0.28, at a higher slope of this increase at lower B content). The maximum content of N bonded in amorphous Si-B-C-N networks of lowest-energy densities is in the range from 34% to 57% (materials which can be grown without unbonded N2) or at most from 42% to 57% (at a cost of affecting materials characteristics by unbonded N2). The results are important for understanding the experimentally reported nitrogen contents, design of stable amorphous nitrides with optimized properties and pathways for their preparation, and identification of what is or is not possible to achieve in this field.

2016 ◽  
Vol 858 ◽  
pp. 300-304
Author(s):  
Zhen Fu Chen ◽  
Dan Wu ◽  
Qiu Wang Tao ◽  
Yuan Chu Gan

The high temperature stability of AC-16, AC-13, AC-20 under specimen thickness of 5cm and 6cm is studied through indoor asphalt mixture high rutting test, Through comparison and analysis about experimental data, it is found that the stability of AC-16, AC-13, AC-20 asphalt mixture at high- temperature decreases in turn. It is shown that thickness changes did not affect the change trend of the high temperature stability under gradation change, and the stability of AC-16 at high-temperature is the best, the AC-13 is second and the AC-20 is less.


Author(s):  
Rajesh Jha ◽  
George S. Dulikravich ◽  
Frank Pettersson ◽  
Henrik Saxén ◽  
Nirupam Chakraborti

Experimental data were used to develop metamodels to predict high temperature alloy chemistry trends influencing stress-to-rupture and time-to-rupture of Nickel based superalloys. Chemistry optimization utilized evolutionary neural networks, bi-objective genetic programming and pruning algorithm. Optimization results were compared with the experimental data and IOSO optimization algorithm. Response surfaces were developed through various modules available in a commercial optimization package. Pareto optimized chemistries were tested using thermodynamic database, FactSage™, by studying the phase distribution as a function of temperature of manufacture and exposure. Uniformity in the amount of critical phases over 0–1200 °C range confirmed high temperature stability for optimized alloys. Paper published with permission.


Alloy Digest ◽  
1989 ◽  
Vol 38 (1) ◽  

Abstract UNS NO6455 is a nickel-chromium-molybdenum alloy with outstanding high-temperature stability as shown by high ductility and corrosion resistance even after long-time aging in the range 1200-1900 F. The alloy also has excellent resistance to stress-corrosion cracking and to oxidizing atmospheres up to 1900 F. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-367. Producer or source: Nickel and nickel alloy producers.


Alloy Digest ◽  
1987 ◽  
Vol 36 (7) ◽  

Abstract UNS No. R54620 is an alpha-beta titanium alloy. It has an excellent combination of tensile strength, creep strength, toughness and high-temperature stability that makes it suitable for service to 1050 F. It is recommended for use where high strength is required. It has outstanding advantages for long-time use at temperatures to 800 F. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and bend strength as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ti-86. Producer or source: Titanium alloy mills.


The temperature factor is one of the limiting factors for obtaining high yields of crops, so one of the main tasks of selection is to search for temperature-resistant genotypes and to create on their basis the banks of crops with high temperature stability. The first step to solving this problem is to conduct a rapid assessment of the temperature plasticity of large populations and to isolate breeding-valuable genotypes from them. There are numerous methods that allow, in the short term with minimal technical and material costs, to carry out an initial assessment of a large number of genotypes at sporophytic level and differentiate them by resistance to the temperature factor. These methods include the method of estimating pollen populations. These studies have repeatedly been conducted on many cultures, their correctness is due to the expression of a large part of the plant genome, both at the diploid and haploid levels of development and demonstrated by many studies in this direction. The aim of our study was to study the stability of gametophyte and sporophyte of collecting varieties and varieties of winter rape to elevated temperatures, to study the correlation between the heat resistance of sporophyte and gametophyte.


Sign in / Sign up

Export Citation Format

Share Document