scholarly journals Interlayer Strength of 3D-Printed Mortar Reinforced by Postinstalled Reinforcement

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6630
Author(s):  
Jihun Park ◽  
Quang-The Bui ◽  
Jungwoo Lee ◽  
Changbin Joh ◽  
In-Hwan Yang

This work was designed to evaluate the interlayer strength of 3D-printed mortar with postinstalled interlayer reinforcement. Two methods of postinstalled interlayer reinforcement were considered according to the amount of overlapping. The first method did not include overlapping of the interlayer reinforcement, while the second method included overlap lengths of 20 and 40 mm. Additionally, two different curing conditions were considered: air-curing conditions and water-curing conditions. The compressive, splitting tensile, and flexural tensile strengths of 3D-printed mortar specimens with different reinforcement methods and curing conditions were investigated under three loading directions. The three loading directions were defined based on the three planes of the printed specimens. The compressive, splitting tensile, and flexural tensile strengths were dependent on the loading directions. In particular, the splitting and flexural tensile strengths decreased considerably when tensile stresses acted on the interlayers of the 3D-printed mortar specimens. However, when longitudinal interlayer reinforcement penetrated the printed layers, the flexural tensile strength or interlayer bonding strength of the printed specimens increased significantly at the interlayers. In addition, mortar specimens reinforced with overlap lengths of 20 and 40 mm were investigated in this study. The flexural tensile strength or interlayer bonding strength of 3D-printed mortar decreased after treatment under air-curing conditions because the interlayers of the printed mortar formed more pores under these conditions and were more vulnerable under loading. Finally, the findings of this study suggested that interlayer reinforcement is a potential method for improving the interlayer bonding strength of 3D-printed mortar.

2018 ◽  
Vol 60 (7-8) ◽  
pp. 679-686 ◽  
Author(s):  
Jim Floor ◽  
Bas van Deursen ◽  
Erik Tempelman

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 545
Author(s):  
Krzysztof Rodzeń ◽  
Preetam K. Sharma ◽  
Alistair McIlhagger ◽  
Mozaffar Mokhtari ◽  
Foram Dave ◽  
...  

The manufacture of polyetheretherketone/hydroxyapatite (PEEK/HA) composites is seen as a viable approach to help enhance direct bone apposition in orthopaedic implants. A range of methods have been used to produce composites, including Selective Laser Sintering and injection moulding. Such techniques have drawbacks and lack flexibility to manufacture complex, custom-designed implants. 3D printing gets around many of the restraints and provides new opportunities for innovative solutions that are structurally suited to meet the needs of the patient. This work reports the direct 3D printing of extruded PEEK/HA composite filaments via a Fused Filament Fabrication (FFF) approach. In this work samples are 3D printed by a custom modified commercial printer Ultimaker 2+ (UM2+). SEM-EDX and µCT analyses show that HA particles are evenly distributed throughout the bulk and across the surface of the native 3D printed samples, with XRD highlighting up to 50% crystallinity and crystalline domains clearly observed in SEM and HR-TEM analyses. This highlights the favourable temperature conditions during 3D printing. The yield stress and ultimate tensile strength obtained for all the samples are comparable to human femoral cortical bone. The results show how FFF 3D printing of PEEK/HA composites up to 30 wt% HA can be achieved.


2015 ◽  
Vol 49 (9) ◽  
pp. 3861-3877 ◽  
Author(s):  
Giedrius Žirgulis ◽  
Oldřich Švec ◽  
Elena Vidal Sarmiento ◽  
Mette Rica Geiker ◽  
Andrzej Cwirzen ◽  
...  

2020 ◽  
Vol 12 (8) ◽  
pp. 3154 ◽  
Author(s):  
Hedelvan Emerson Fardin ◽  
Adriana Goulart dos Santos

This research aimed to investigate the mechanical and physical properties of Roller Compacted Concrete (RCC) used with Recycled Concrete Aggregate (RCA) as a replacement for natural coarse aggregate. The maximum dry density method was adopted to prepare RCC mixtures with 200 kg/m³ of cement content and coarse natural aggregates in the concrete mixture. Four RCC mixtures were produced from different RCA incorporation ratios (0%, 5%, 15%, and 30%). The compaction test, compressive strength, splitting tensile strength, flexural tensile strength, and modulus of elasticity, porosity, density, and water absorption tests were performed to analyze the mechanical and physical properties of the mixtures. One-way Analysis of Variance (ANOVA) was used to identify the influences of RCA on RCC’s mechanical properties. As RCA increased in mixtures, some mechanical properties were observed to decrease, such as modulus of elasticity, but the same was not observed in the splitting tensile strength. All RCCs displayed compressive strength greater than 15.0 MPa at 28 days, splitting tensile strength above 1.9 MPa, flexural tensile strength above 2.9 MPa, and modulus of elasticity above 19.0 GPa. According to Brazilian standards, the RCA added to RCC could be used for base layers.


2016 ◽  
Vol 47 (2) ◽  
pp. 197-210 ◽  
Author(s):  
Xudong Yang ◽  
Xiuting Jiang ◽  
Jiyong Hu ◽  
Fangjuan Wang ◽  
Chun Hu

To estimate the photo-oxidation aging performance of PVC-coated membrane material in atmospheric conditions under tensile stresses, the relationship between physical and mechanical properties under accelerated weathering test and outdoor weathering test is studied with the same cumulative UV radiation energy. And then, both tensile strength and whiteness index were measured and compared to characterize the property change of membrane material after aging under four different tensile stresses (0%, 5%, 10% and 20% of the breaking strength), respectively. In addition, FTIR spectrometry was applied to characterize the chemical components of the samples under different weathering conditions, and the carbonyl index was extracted. The results show that there were significant differences of tensile strength and carbonyl index between two kinds of aging conditions, whereas with the increasing tensile stresses, the whiteness index represented a consistent increasing deviation of accelerated weathering from the outdoor weathering. However, the relationship have been built between both whiteness index and tensile strength retention of accelerated weathering and those of outdoor weathering conditions after a Schwarzschild’s modification. Therefore, the service lifespan of PVC-coated membrane materials can be evaluated by accelerated weathering tests under tensile stresses.


1983 ◽  
Vol 10 (1) ◽  
pp. 104-115
Author(s):  
Zenon A. Zielinski ◽  
Ioanis Spiropoulos

The flexural uniaxial and biaxial tensile strength of concrete was studied experimentally on one-way and two-way ribbed slab specimens. The specimens, consisting of a thin slab and deep ribs, constituted part of a waffle-like structure.Uniaxial tension was achieved by supporting the specimens at two points at the ends of one rib, and biaxial tension by supporting the specimens at four points at the ends of two cross ribs. In both support conditions, load was applied in the middle of the slab, thus introducing flexural tension in the ribs and compression in the slab.Measurements of tensile strain were carried out by means of uniaxial strain gauges attached to the bottom surface of the ribs. The modes of failure of concrete in uniaxial and biaxial tension were observed and are discussed in this paper. A revised biaxial failure envelope of concrete in tension is proposed.The test results indicate that the tensile strength of concrete is about 38% higher in the uniaxial stress state than in the biaxial. Keywords: concrete strength, uniaxial and biaxial tensile flexural strength, maximum strains, cracking, ribbed structure, waffle structure.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xiaoguang Zheng ◽  
Qi Ren ◽  
Huan Xiong ◽  
Xiaoming Song

As one of the major contributors to the early failures of steel bridge deck pavements, the bonding between steel and asphalt overlay has long been a troublesome issue. In this paper, a novel composite bonding structure was introduced consisting of epoxy resin micaceous iron oxide (EMIO) primer, solvent-free epoxy resin waterproof layer, and ethylene-vinyl acetate (EVA) hot melt pellets. A series of strength tests were performed to study its mechanical properties, including pull-off strength tests, dumbbell tensile tests, lap shear tests, direct tension tests, and 45°-inclined shear tests. The results suggested that the bonding structure exhibited fair bonding strength, tensile strength, and shear strength. Anisotropic behaviour was also observed at high temperatures. For epoxy resin waterproof layer, the loss of bonding strength, tensile strength, and shear strength at 60°C was 70%, 35%, and 39%, respectively. Subsequent pavement performance-oriented tests included five-point bending tests and accelerated wheel tracking tests. The impacts of bonding on fatigue resistance and rutting propagation were studied. It was found that the proposed bonding structure could provide a durable and well-bonded interface and was thus beneficial to prolong the fatigue lives of asphalt overlay. The choice of bonding materials was found irrelevant to the ultimate rutting depth of pavements. But the bonding combination of epoxy resin waterproof and EVA pellets could delay the early-stage rutting propagation.


Sign in / Sign up

Export Citation Format

Share Document