scholarly journals Influence of Sandblasting and Chemical Etching on Titanium 99.2–Dental Porcelain Bond Strength

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 116
Author(s):  
Malgorzata Lubas ◽  
Jaroslaw Jan Jasinski ◽  
Anna Zawada ◽  
Iwona Przerada

The metal–ceramic interface requires proper surface preparation of both metal and ceramic substrates. This process is complicated by the differences in chemical bonds and physicochemical properties that characterise the two materials. However, adequate bond strength at the interface and phase composition of the titanium-bioceramics system is essential for the durability of dental implants and improving the substrates’ functional properties. In this paper, the authors present the results of a study determining the effect of mechanical and chemical surface treatment (sandblasting and etching) on the strength and quality of the titanium-low-fusing dental porcelain bond. To evaluate the strength of the metal-ceramic interface, the authors performed mechanical tests (three-point bending) according to EN ISO 9693 standard, microscopic observations (SEM-EDS), and Raman spectroscopy studies. The results showed that depending on the chemical etching medium used, different bond strength values and failure mechanisms of the metal-ceramic system were observed. The analyzed samples met the requirements of EN ISO 9693 for metal-ceramic systems and received strength values above 25 MPa. Higher joint strength was obtained for the samples after sandblasting and chemical etching compared to the samples subjected only to sandblasting.

Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5745
Author(s):  
Joon-Ki Hong ◽  
Seong-Kyun Kim ◽  
Seong-Joo Heo ◽  
Jai-Young Koak

Cobalt–chromium (Co-Cr) metal is one of the widely used biomaterials in the fabrication of dental prosthesis. The purpose of this study was to investigate whether there are differences in the properties of metals and bond strength with ceramics depending on the manufacturing methods of Co-Cr alloy. Co-Cr alloy specimens were prepared in three different ways: casting, milling, and selective laser melting (SLM). The mechanical properties (elastic modulus, yield strength, and flexural strength) of the alloys were investigated by flexure method in three-point bending mode, and microstructures of the specimens were analyzed. After application of the veneering ceramic through the three-point bending test, bond strength of the Metal-Ceramic was investigated. The cracked surfaces were observed by means of energy dispersive X-ray (EDX) spectroscopy and scanning electron microscopy (SEM) with backscattered electron (BSE) images. In mechanical properties, the elastic modulus was highest for the casting group, and the yield strength and flexural strength were lowest for the milling group. The SLM group showed finer homogeneous crystalline-microstructure, and a layered structure was observed at the fractured surface. After the ceramic bond strength test, all groups showed a mixed failure pattern. The casting group showed the highest bond strengths, whereas there was no significant difference between the other two groups. However, all groups have met the standard of bond strength according to international standards organization (ISO) with the appropriate passing rate. The results of this study indicate that the SLM manufacturing method may have the potential to replace traditional techniques for fabricating dental prosthesis.


Author(s):  
Georgel MIHU ◽  
Claudia Veronica UNGUREANU ◽  
Vasile BRIA ◽  
Marina BUNEA ◽  
Rodica CHIHAI PEȚU ◽  
...  

Epoxy resins have been presenting a lot of scientific and technical interests and organic modified epoxy resins have recently receiving a great deal of attention. For obtaining the composite materials with good mechanical proprieties, a large variety of organic modification agents were used. For this study gluten and gelatin had been used as modifying agents thinking that their dispersion inside the polymer could increase the polymer biocompatibility. Equal amounts of the proteins were milled together and the obtained compound was used to form 1 to 5% weight ratios organic agents modified epoxy materials. To highlight the effect of these proteins in epoxy matrix mechanical tests as three-point bending and compression were performed.


Author(s):  
Sílvia Fontes Do Amaral Pereira

O objetivo do presente estudo in vitro foi verificar, através de teste de cisalhamento, a resistência de união da liga Wironia®light, à base de níquel-cromo sem berílio, sujeita a diferentes tratamentos de superfície, às cerâmicas Vita VM13 e Noritake. Foram confeccionados oitenta espécimes cilíndricos metálicos, com o auxílio de uma matriz de aço, nas dimensões de 4 mm de diâmetro por 4 mm de altura. Os espécimes foram divididos em oito grupos (n=10), de acordo com o tipo de tratamento superficial aplicado à liga metálica e com o tipo de cerâmica testada. Estes foram avaliados de acordo com os critérios de resistência ao cisalhamento e, com o auxílio de microscopia óptica, foi avaliada a área de cerâmica remanescente aderida ao metal após a fratura. Os corpos-de-prova do G6 (fabricados em Cerâmica Noritake com jateamento-26,401 ± 11,637 MPa) apresentaram maior resistência ao cisalhamento (p> 0,05) enquanto que os menores valores foram registrados no G4 (Cerâmica Vita com utilização de broca-13,440 ± 7,766 MPa). G6 (19425,4 μm2) apresentou a maior área de cerâmica aderida ao metal (p> 0,05) enquanto que o G4 (2310,2 μm2) apresentou a menor área. Concluiu-se que G6 obteve os valores mais altos de resistência ao cisalhamento e de remanescente cerâmico aderido à superfície metálica enquanto que o G4 obteve os valores mais baixos. Descritores: Restaurações metalo-cerâmicas; ligas de níquel-cromo;porcelana dentária.


10.2341/07-42 ◽  
2008 ◽  
Vol 33 (1) ◽  
pp. 79-88 ◽  
Author(s):  
A. D. Loguercio ◽  
S. K. Moura ◽  
A. Pellizzaro ◽  
K. Dal-Bianco ◽  
R. T. Patzlaff ◽  
...  

Clinical Relevance The effect of surface preparation was adhesive-dependent. Improvements in resin-enamel bond strength after enamel preparation were observed only for AdheSE and Optibond Solo plus Self-Etch Primer. Among the self-etch systems, mild, self-etch Clearfil SE Bond showed the highest bond strength values. No degradation of resin-enamel bonds was observed after 12 months of water storage, regardless of the adhesive tested.


2013 ◽  
Vol 712-715 ◽  
pp. 474-477
Author(s):  
Stepan Major ◽  
Stepan Hubalovsky ◽  
Josef Šedivý

Nitinol is metal alloy of nickel and titanium. It has wide range of applications. The most significant application is production of self-expanding stent-grafts, which are commonly used in vascular surgery. Stent-graft manufactures are confronted with two basic requirements: stents must have an infinite life; stents must be made of the thinnest wires us possible. Stent-graft failure or device fatigue remains major concern for stent-graft manufactures and researches. The stent-grafts are mechanically loaded, and also the device is placed in very aggressive environment. The corrosion stability of Nitinol is strongly dependent on the surface preparation: grinding, polishing, chemical etching. The paper deals with fatigue degradation of stent-grafts in corrosive environment.


2018 ◽  
Vol 16 (1) ◽  
pp. 726-731 ◽  
Author(s):  
Tennur Gülşen Ünal ◽  
Ege Anıl Diler

AbstractThe effects of micro and nano sized reinforcement particles on microstructure and mechanical properties of aluminium alloy-based metal matrix composites were investigated in this study. AlSi9Cu3 alloy was reinforced with micro and nano sized ceramic reinforcement particles at different weight fractions by using a stir casting method. The mechanical tests (hardness, three point bending) were performed to determine the mechanical properties of AlSi9Cu3 alloy-based microcomposites (AMMCs) and nanocomposites (AMMNCs). The experimental results have shown that the size and weight fraction of reinforcement particles have a strong influence on the microstructure and the mechanical properties of AlSi9Cu3 alloy-based microcomposites and nanocomposites. The relative densities of all AMMC and AMMNC samples are lower than unreinforced AlSi9Cu3 alloy due to porosity formation with the increase of weight fraction of reinforcement particles. As weight fraction increases, hardness values of AMMCs and AMMNCs increase. Maximum flexural strength can be obtained at 3.5wt.% for the AMMC sample with microsized Al2O3 particles and at 2wt.% for the AMMNC sample with nano-sized Al2O3 particles. After the weight fractions exceed these values, flexural strengths of both AMMCs and AMMNCs decrease due to clustering of Al2O3 particles.


Author(s):  
Bahram M. Shahrooz ◽  
Arnol J. Gillum ◽  
Jeremiah Cole ◽  
Ahmet Turer

The bond strength between portland cement overlays and bridge decks treated with high-molecular-weight methacrylate sealers is examined. The data universally suggest that sealers reduce the available bond strength. However, extra surface preparation techniques, such as light sandblasting of the sealed surface or broadcasting sand over the surface immediately after sealing [at approximately 1 kg/m2 (20 lb/100 ft2)], restore the strengths to 80 or 85 percent, respectively, of the unsealed surface. Service-level fatigue testing and loading well beyond the serviceability limit state do not adversely affect the bond strength so long as the sealed surface is treated before the application of the overlay. Therefore, to seal the existing cracks, bridge decks may be sealed if either of the recommended secondary surface preparation techniques is followed.


Sign in / Sign up

Export Citation Format

Share Document