scholarly journals Surface Properties of Ultrasonic Vibration-Assisted ELID Grinding ZTA Ceramics

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 636
Author(s):  
Zongxia Fu ◽  
Fan Chen ◽  
Wenbo Bie ◽  
Bo Zhao ◽  
Xiaobo Wang

This study aimed to explore the evolution of surface properties of nanocomposite ceramics during ultrasonic vibration-assisted electrolytic in-process dressing (UVA-ELID) grinding. First, the trajectory of the grain was analyzed, and the motion was simulated using MATLAB to demonstrate the mechanism of UVA-ELID grinding. The critical grinding depth was also calculated under the effect of ultrasonic vibration. Then, the conventional ELID (C-ELID) and UVA-ELID grinding were compared. The surface properties, including surface residual stress, surface microstructure, surface roughness, and surface morphology, were used to evaluate the effectiveness and feasibility of UVA-ELID grinding. Whether it was conventional C-ELID or UVA-ELID grinding, the residual compressive stress was introduced into the machined surface, while the former was lower than the latter. The microstructure of the UVA-ELID grinding was evenly distributed, and the ductility removal occurred during material removal. The surface roughness of Ra and Rz was reduced by 14.5% and 20.6%, respectively, during the UVA-ELID grinding. The surface morphology was dramatically changed with the help of ultrasonic vibration. In a word, for nanocomposite ceramic, the UVA-ELID grinding can significantly improve surface performance and achieve a better machining effect.

2020 ◽  
Vol 10 (2) ◽  
pp. 516 ◽  
Author(s):  
Pei Yi Zhao ◽  
Ming Zhou ◽  
Xian Li Liu ◽  
Bin Jiang

Because of the changes in cutting conditions and ultrasonic vibration status, the proportion of multiple material removal modes are of uncertainty and complexity in ultrasonic vibration-assisted grinding of optical glass. Knowledge of the effect of machined surface composition is the basis for better understanding the influence mechanisms of surface roughness, and also is the key to control the surface composition and surface quality. In the present work, 32 sets of experiments of ultrasonic vibration-assisted grinding of BK7 optical glass were carried out, the machined surface morphologies were observed, and the influence law of machining parameters on the proportion of different material removal was investigated. Based on the above research, the effect of surface composition was briefly summarized. The results indicated that the increasing of spindle rotation speed, the decreasing of feed rate and grinding depth can improve the proportion of ductile removal. The introduction of ultrasonic vibration can highly restrain the powdering removal, and increase the proportion of ductile removal. Grinding depth has a dominant positive effect on the surface roughness, whereas the spindle rotation speed and ultrasonic amplitude both have negative effect, which was caused by the reduction of brittle fracture removal.


2012 ◽  
Vol 523-524 ◽  
pp. 155-160 ◽  
Author(s):  
Ya Guo Li ◽  
Yong Bo Wu ◽  
Li Bo Zhou ◽  
Hui Ru Guo ◽  
Jian Guo Cao ◽  
...  

Ultrasonic vibration assisted processing is well known for the improvement in machined surface quality and processing efficiency due to the reduced forces and tribology-generated heating when grinding hard-brittle materials. We transplanted this philosophy to chemo-mechanical fixed abrasive polishing of optical glass, namely fused silica, in an attempt to improve surface roughness and/or material removal rate. Experiments were conducted to elucidate the fundamental characteristics of chemo-mechanical fixed abrasive polishing of fused silica in the presence and absence of ultrasonic vibration on a setup with an in-house built gadget. The experimental results show that ultrasonic vibration assisted chemo-mechanical fixed abrasive polishing can yield increased material removal rate while maintaining the surface roughness of manufactured optics compared to conventional fixed abrasive polishing without ultrasonic vibration. The mechanism of material removal in fixed abrasive polishing was also delved. We found that the glass material is removed through the synergic effects of chemical and mechanical actions between abrasives and glass and the resultant grinding swarf contains ample Si element as well as Ce element, standing in stark contrast to the polisher that contains abundant Ce element and minor Si element.


2011 ◽  
Vol 230-232 ◽  
pp. 829-833
Author(s):  
Hong Li Zhang ◽  
Shao Fu Shan ◽  
Jian Hua Zhang

Based on the generating mechanism of surface morphology by tangential ultrasonic vibration assisted grinding (TUAG), the calculating model for surface roughness is established and the surface roughness experiments are conducted both in TUAG and conventional grinding (CG). The results indicate that the effect of the grinding abrasive size on the surface roughness is the most obvious, and the surface roughness is decreased due to the tangential ultrasonic vibration.


Materials ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 125 ◽  
Author(s):  
Lei Guo ◽  
Xinrong Zhang ◽  
Shibin Chen ◽  
Jizhuang Hui

Ultraviolet-curable resin was introduced as a bonding agent into the fabrication process of precision abrasive machining tools in this study, aiming to deliver a rapid, flexible, economical, and environment-friendly additive manufacturing process to replace the hot press and sintering process with thermal-curable resin. A laboratory manufacturing process was established to develop an ultraviolet-curable resin bond diamond lapping plate, the machining performance of which on the ceramic workpiece was examined through a series of comparative experiments with slurry-based iron plate lapping. The machined surface roughness and weight loss of the workpieces were periodically recorded to evaluate the surface finish quality and the material removal rate. The promising results in terms of a 12% improvement in surface roughness and 25% reduction in material removal rate were obtained from the ultraviolet-curable resin plate-involved lapping process. A summarized hypothesis was drawn to describe the dynamically-balanced state of the hybrid precision abrasive machining process integrated both the two-body and three-body abrasion mode.


2020 ◽  
Vol 846 ◽  
pp. 122-127
Author(s):  
Gandjar Kiswanto ◽  
Yolanda Rudy Johan ◽  
Poly ◽  
Tae Jo Ko

Micro products or micro components are commonly used in today’s world. Research around micromanufacture technologies to produce a better product quality has been going on extensively. Ultrasonic vibration assisted micromilling (UVAM) is one of the technologies that can give a better machining qualities over the conventional ones. One of the benefits UVAM can give is reducing the machined surface roughness. The purpose of this paper is to give an idea how vibration assisted micromilling can give a better surface roughness quality. The theoritical surface roughness geometry model is made using MATLAB software. The cutting tool used in the simulation is end mill. There is a feature of the cutting tool called bottom cutting edge angle. This feature will be considered on this paper. The effects of the bottom cutting edge on workpiece machined surface can be looked visually from the simulation. Thus, the effects of cutting process using UVAM on the workpiece surface can be looked as well through the simulation.


2008 ◽  
Vol 53-54 ◽  
pp. 243-247 ◽  
Author(s):  
Bo Zhao ◽  
Ming Li Zhao ◽  
Guo Fu Gao

The influence of ultrasonic vibration on the surface roughness and micro-topography of ceramics plate is discussed in this paper. Grinding assisted by two-dimensional ultrasonic vibration is developed to deal with the processing difficulty of ceramic materials due to its hard-brittle property. The experimental results show that the surface roughness value obtained in two-dimensional ultrasonic grinding nano-ZrO2 ceramic plate specimen is obviously smaller than that in common grinding, and the scratched grooves on the machined surface in ultrasonic grinding is wider and relatively smoother than that in common grinding. Consequently, it proves that the two-dimensional ultrasonic machining is a feasible, high-efficient machining method for hard-brittle materials.


2012 ◽  
Vol 500 ◽  
pp. 269-274 ◽  
Author(s):  
Guo Chao Qiao ◽  
Ming Zhou ◽  
Ming Wang

In order to investigate the influences of machining parameters on surface roughness in ultrasonic vibration mill-grinding, the motion of abrasive grain is analyzed. The analysis indicates that grain and workpiece separate periodically which are beneficial for coolant entering into grinding zone to reduce grinding temperature and grinding force and improve surface quality. Experiments are carried out and detected by SEM and roughmeter, the results indicate that influences of spindle rate, feeding speed, cutting depth and amplitude decrease in turn. Through regression analysis, an empirical formula is obtained. The experiments indicate that material removal mode dominates surface roughness.


2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Ping Zou ◽  
Yingshuai Xu ◽  
Yu He ◽  
Mingfang Chen ◽  
Hao Wu

This research study focuses on the experimental analysis of the three-dimensional (3D) surface topography and surface roughness of the workpiece machined with ultrasonic vibration assisted turning (UAT) in comparison to conventional turning (CT). For the challenge that machining difficulties of 304 austenitic stainless steel (ASS 304) and high demands for the machined surface quality and machining precision represent, starting with cutting principle and processing technology, the ultrasonic vibration method is employed to scheme out a machining system of ultrasonic vibration assisted turning (MS-UAT). The experiments for turning the workpiece of ASS 304 are conducted with and without ultrasonic vibration using the designed MS-UAT, and then the 3D morphology evaluation parametersSaandSqare applied to characterize and analyse the machined surface. The experimental results obtained demonstrate that the process parameters in UAT of ASS 304 have obvious effect on the 3D surface topography and surface roughness of machined workpiece, and the appropriate choice of various process parameters, including ultrasonic amplitude, feed rate, depth of cut, and cutting speed, can enhance the machined surface quality efficiently to make the machining effect of UAT much better than that of CT.


2007 ◽  
Vol 329 ◽  
pp. 445-450 ◽  
Author(s):  
Bo Zhao ◽  
Yan Wu ◽  
Feng Jiao ◽  
G.F. Gao ◽  
Xun Sheng Zhu

The grain cutting trace of elliptical spiral in workpiece two-dimensional ultrasonic vibration grinding(WTDUVG) is defined, the reason of machining accuracy improvement by applying two-dimensional ultrasonic vibration is discussed. Adopting two-dimensional ultrasonic composite processing, the influences of grinding depth, worktable velocity, wheel granularity on the surface roughness of Al2O3/ZrO2 ceramic nanocomposites were described. Experimental results of AFM microstructure show that the material removal model in WTDUVG is dominated by ductile flow of material, some crystal refinement, the crush powder and grain pull-out are visible and there is almost no fracture. Furthermore, the surface roughness in WTDUVG with coarse grit is about 30 40% less than that in CG under identical grinding condition; the qualitative analysis of X-diffraction results indicated that the surface phases are composed of α-Al2O3, t-ZrO2 and small quality m-ZrO2, there are amorphous phase in the surface both with and without vibration grinding. M-zirconia phase transitions rule in vibration and conventional grinding was found. Under definitive grinding conditions, the material removal mechanism of inelastic deformation is the principal removal mechanism of Al2O3/ZrO2 ceramic nanocomposites, the grit size of diamond wheel and vibration grinding mode have important influence on material removal mechanism of ceramic nanocomposites.


Author(s):  
Feng Jiao ◽  
Ming-jun Zhang ◽  
Ying Niu

Laser heating assisted cutting is a lucrative technique for machining difficult-to-machine materials such as tungsten carbide (YG20), which uses a high power laser to focally heat a workpiece before the material removal with traditional or innovative cutting tool. In the latter case, the application of ultrasonic vibration to the cutting edge was found to replace the continuous cutting mode to the interrupted one, it reduces the adhesion and entanglement of chips, improves the tool wear and surface roughness of the workpiece. The combination of laser heating assisted cutting and two-dimensional ultrasonic vibration cutting methods has been successfully applied by the authors of this paper for cutting of tungsten carbide (YG20). In this follow-up study, the proposed composite method is experimentally and theoretically verified. Through the mathematical model and simulation analysis, its advantages, including small cutting force, softening the effect and improved machining properties of the processed material (YG20) are corroborated. The dependencies between the laser power, cutting speed, depth of cut, and feed rate on the surface roughness are established via the response surface methodology. The genetic algorithm is applied to the optimization of machining parameters by setting the material removal rate as the object variable and surface roughness as a constraint variable. The results obtained strongly suggest that the optimized parameters improve the processing efficiency and furnish the required processing quality.


Sign in / Sign up

Export Citation Format

Share Document