scholarly journals Research on Drilling Rate Optimization of a UCS Identification System While Drilling for Coal Mine Roadway Roofs

Machines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 242
Author(s):  
Guangdong Yu ◽  
Qian Hu ◽  
Xuewen Feng ◽  
Guoying Meng ◽  
Yifan Nie

In this paper, to identify the roof unconfined compressive strength (UCS) in the process of coal mine roadway support in real-time and optimize the real-time drilling speed while drilling, this paper proposes and establishes a drilling test method for assessing the uniaxial compressive strength (UCS) of a roof. This method can be used to optimize the speed of drilling. Moreover, a mathematical model of the power output is developed for a roof-strata identification system with a drilling test system. The results were as follows: (1) the system was able to identify the uniaxial compressive strength of roof rock; (2) the pressure of the drill leg of the pneumatic bolt did not match the output power of the pneumatic motor, the pneumatic motor could not reach the maximum power point, and the insufficient thrust of the pneumatic leg led to failure of the maximum output power of the pneumatic motor; (3) to increase the output power of the air motor and thus improve the drilling speed, we applied a booster valve for the system. The experimental results show that the power of the air motor has a linear relationship with drilling speed. In this way, the speed of the drill can be increased by increasing the motor power.

2012 ◽  
Vol 170-173 ◽  
pp. 395-398
Author(s):  
Xiao Lei Wang ◽  
Shun Xi Yan ◽  
Shu Jiang Zhao

The direct roof of B132 coal seam is conglomerate layer in a coal mine, which is cemented with gravels and sandstones and has brought great difficulty for tunnel supporting. It is necessary to study the grain size and strength characteristics of gravel in conglomerate layer for the mining of B132 coal seam safely and efficiently. The statistics and analysis of grain-size characteristics of gravel was carried out in this paper, including of the quantity and volume percent of gravel. Uniaxial compressive strength of gravel was tested with point load method. The test results show that uniaxial compressive strength of gravel is very high, especially the black gravels, whose compressive strength is commonly above 200 MPa and the highest even can reach more than 300 MPa.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yiren Wang ◽  
Mashari Alangari ◽  
Joshua Hihath ◽  
Arindam K. Das ◽  
M. P. Anantram

Abstract Background The all-electronic Single Molecule Break Junction (SMBJ) method is an emerging alternative to traditional polymerase chain reaction (PCR) techniques for genetic sequencing and identification. Existing work indicates that the current spectra recorded from SMBJ experimentations contain unique signatures to identify known sequences from a dataset. However, the spectra are typically extremely noisy due to the stochastic and complex interactions between the substrate, sample, environment, and the measuring system, necessitating hundreds or thousands of experimentations to obtain reliable and accurate results. Results This article presents a DNA sequence identification system based on the current spectra of ten short strand sequences, including a pair that differs by a single mismatch. By employing a gradient boosted tree classifier model trained on conductance histograms, we demonstrate that extremely high accuracy, ranging from approximately 96 % for molecules differing by a single mismatch to 99.5 % otherwise, is possible. Further, such accuracy metrics are achievable in near real-time with just twenty or thirty SMBJ measurements instead of hundreds or thousands. We also demonstrate that a tandem classifier architecture, where the first stage is a multiclass classifier and the second stage is a binary classifier, can be employed to boost the single mismatched pair’s identification accuracy to 99.5 %. Conclusions A monolithic classifier, or more generally, a multistage classifier with model specific parameters that depend on experimental current spectra can be used to successfully identify DNA strands.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2303
Author(s):  
Congyu Zhong ◽  
Liwen Cao ◽  
Jishi Geng ◽  
Zhihao Jiang ◽  
Shuai Zhang

Because of its weak cementation and abundant pores and cracks, it is difficult to obtain suitable samples of tectonic coal to test its mechanical properties. Therefore, the research and development of coalbed methane drilling and mining technology are restricted. In this study, tectonic coal samples are remodeled with different particle sizes to test the mechanical parameters and loading resistivity. The research results show that the particle size and gradation of tectonic coal significantly impact its uniaxial compressive strength and elastic modulus and affect changes in resistivity. As the converted particle size increases, the uniaxial compressive strength and elastic modulus decrease first and then tend to remain unchanged. The strength of the single-particle gradation coal sample decreases from 0.867 to 0.433 MPa and the elastic modulus decreases from 59.28 to 41.63 MPa with increasing particle size. The change in resistivity of the coal sample increases with increasing particle size, and the degree of resistivity variation decreases during the coal sample failure stage. In composite-particle gradation, the proportion of fine particles in the tectonic coal sample increases from 33% to 80%. Its strength and elastic modulus increase from 0.996 to 1.31 MPa and 83.96 to 125.4 MPa, respectively, and the resistivity change degree decreases. The proportion of medium particles or coarse particles increases, and the sample strength, elastic modulus, and resistivity changes all decrease.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 426
Author(s):  
Behrooz Abbasi ◽  
Xiaoliang Wang ◽  
Judith C. Chow ◽  
John G. Watson ◽  
Bijan Peik ◽  
...  

Respirable coal mine dust (RCMD) exposure is associated with black lung and silicosis diseases in underground miners. Although only RCMD mass and silica concentrations are regulated, it is possible that particle size, surface area, and other chemical constituents also contribute to its adverse health effects. This review summarizes measurement technologies for RCMD mass concentrations, morphology, size distributions, and chemical compositions, with examples from published efforts where these methods have been applied. Some state-of-the-art technologies presented in this paper have not been certified as intrinsically safe, and caution should be exerted for their use in explosive environments. RCMD mass concentrations are most often obtained by filter sampling followed by gravimetric analysis, but recent requirements for real-time monitoring by continuous personal dust monitors (CPDM) enable quicker exposure risk assessments. Emerging low-cost photometers provide an opportunity for a wider deployment of real-time exposure assessment. Particle size distributions can be determined by microscopy, cascade impactors, aerodynamic spectrometers, optical particle counters, and electrical mobility analyzers, each with unique advantages and limitations. Different filter media are required to collect integrated samples over working shifts for comprehensive chemical analysis. Teflon membrane filters are used for mass by gravimetry, elements by energy dispersive X-ray fluorescence, rare-earth elements by inductively coupled plasma-mass spectrometry and mineralogy by X-ray diffraction. Quartz fiber filters are analyzed for organic, elemental, and brown carbon by thermal/optical methods and non-polar organics by thermal desorption-gas chromatography-mass spectrometry. Polycarbonate-membrane filters are analyzed for morphology and elements by scanning electron microscopy (SEM) with energy dispersive X-ray, and quartz content by Fourier-transform infrared spectroscopy and Raman spectroscopy.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 813
Author(s):  
Veljko Rupar ◽  
Vladimir Čebašek ◽  
Vladimir Milisavljević ◽  
Dejan Stevanović ◽  
Nikola Živanović

This paper presents a methodology for determining the uniaxial and triaxial compressive strength of heterogeneous material composed of dacite (D) and altered dacite (AD). A zone of gradual transition from altered dacite to dacite was observed in the rock mass. The mechanical properties of the rock material in that zone were determined by laboratory tests of composite samples that consisted of rock material discs. However, the functional dependence on the strength parameter alteration of the rock material (UCS, intact UCS of the rock material, and mi) with an increase in the participation of “weaker” rock material was determined based on the test results of uniaxial and triaxial compressive strength. The participation of altered dacite directly affects the mode and mechanism of failure during testing. Uniaxial compressive strength (σciUCS) and intact uniaxial compressive strength (σciTX) decrease exponentially with increased AD volumetric participation. The critical ratio at which the uniaxial compressive strength of the composite sample equals the strength of the uniform AD sample was at a percentage of 30% AD. Comparison of the obtained exponential equation with practical suggestions shows a good correspondence. The suggested methodology for determining heterogeneous rock mass strength parameters allows us to determine the influence of rock material heterogeneity on the values σciUCS, σciTX, and constant mi. Obtained σciTX and constant mi dependences define more reliable rock material strength parameter values, which can be used, along with rock mass classification systems, as a basis for assessing rock mass parameters. Therefore, it is possible to predict the strength parameters of the heterogeneous rock mass at the transition of hard (D) and weak rock (AD) based on all calculated strength parameters for different participation of AD.


Sign in / Sign up

Export Citation Format

Share Document