scholarly journals Some Remarks on a Variational Method for Stiff Differential Equations

Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 455
Author(s):  
Sergio Amat ◽  
María José Legaz ◽  
Pablo Pedregal

We have recently proposed a variational framework for the approximation of systems of differential equations. We associated, in a natural way, with the original problem, a certain error functional. The discretization is based on standard descent schemes, and we can use a variable-step implementation. The minimization problem has a unique solution, and the approach has a global convergence. The use of our error-functional strategy was considered by other authors, but using a completely different way to derive the discretization. Their technique was based on the use of an integral form of the Euler equation for a related optimal control problem, combined with an adapted version of the shooting method, and the cyclic coordinate descent method. In this note, we illustrate and compare our strategy to theirs from a numerical point of view.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 174
Author(s):  
Janez Urevc ◽  
Miroslav Halilovič

In this paper, a new class of Runge–Kutta-type collocation methods for the numerical integration of ordinary differential equations (ODEs) is presented. Its derivation is based on the integral form of the differential equation. The approach enables enhancing the accuracy of the established collocation Runge–Kutta methods while retaining the same number of stages. We demonstrate that, with the proposed approach, the Gauss–Legendre and Lobatto IIIA methods can be derived and that their accuracy can be improved for the same number of method coefficients. We expressed the methods in the form of tables similar to Butcher tableaus. The performance of the new methods is investigated on some well-known stiff, oscillatory, and nonlinear ODEs from the literature.



2002 ◽  
Vol 34 (03) ◽  
pp. 484-490 ◽  
Author(s):  
Asger Hobolth ◽  
Eva B. Vedel Jensen

Recently, systematic sampling on the circle and the sphere has been studied by Gual-Arnau and Cruz-Orive (2000) from a design-based point of view. In this note, it is shown that their mathematical model for the covariogram is, in a model-based statistical setting, a special case of the p-order shape model suggested by Hobolth, Pedersen and Jensen (2000) and Hobolth, Kent and Dryden (2002) for planar objects without landmarks. Benefits of this observation include an alternative variance estimator, applicable in the original problem of systematic sampling. In a wider perspective, the paper contributes to the discussion concerning design-based versus model-based stereology.



1996 ◽  
Vol 05 (04) ◽  
pp. 427-439 ◽  
Author(s):  
RICCARDO BENEDETTI ◽  
CARLO PETRONIO

In this paper we discuss the beautiful idea of Justin Roberts [7] (see also [8]) to re-obtain the Turaev-Viro invariants [11] via skein theory, and re-prove elementarily the Turaev-Walker theorem [9], [10], [13]. We do this by exploiting the presentation of 3-manifolds introduced in [1], [4]. Our presentation supports in a very natural way a formal implementation of Roberts’ idea. More specifically, what we show is how to explicitly extract from an o-graph (the object by which we represent a manifold, see below), one of the framed links in S3 which Roberts uses in the construction of his invariant, and a planar diagrammatic representation of such a link. This implies that the proofs of invariance and equality with the Turaev-Viro invariant can be carried out in a completely “algebraic” way, in terms of a planar diagrammatic calculus which does not require any interpretation of 3-dimensional figures. In particular, when proving the “term-by-term” equality of the expansion of the Roberts invariant with the state sum which gives the Turaev-Viro invariant, we simultaneously apply several times the “fusion rule” (which is formally defined, strictly speaking, only in diagrammatic terms), showing that the “braiding and twisting” which a priori may exist on tetrahedra is globally dispensable. In our point of view the success of this formal “algebraic” approach witnesses a certain efficiency of our presentation of 3-manifolds via o-graphs. In this work we will widely use recoupling theory which was very clearly exposed in [2], and therefore we will avoid recalling notations. Actually, for the purpose of stating and proving our results we will need to slightly extend the class of trivalent ribbon diagrams on which the bracket can be computed. We also address the reader to the references quoted in [2], in particular for the fundamental contributions of Lickorish to this area. In our approach it is more natural to consider invariants of compact 3-manifolds with non-empty boundary. The case of closed 3-manifolds is included by introducing a correction factor corresponding to boundary spheres, as explained in §2. Our main result is actually an extension to manifolds with boundary of the Turaev-Walker theorem: we show that the Turaev-Viro invariant of such a manifold coincides (up to a factor which depends on the Euler characteristic) with the Reshetikhin-Turaev-Witten invariant of the manifold mirrored in its boundary.



2012 ◽  
Vol 2012 ◽  
pp. 1-28
Author(s):  
Fuhuo Li

We try to pave a smooth road to a proper understanding of control problems in terms of mathematical disciplines, and partially show how to number-theorize some practical problems. Our primary concern is linear systems from the point of view of our principle of visualization of the state, an interface between the past and the present. We view all the systems as embedded in the state equation, thus visualizing the state. Then we go on to treat the chain-scattering representation of the plant of Kimura 1997, which includes the feedback connection in a natural way, and we consider theH∞-control problem in this framework. We may view in particular the unit feedback system as accommodated in the chain-scattering representation, giving a better insight into the structure of the system. Its homographic transformation works as the action of the symplectic group on the Siegel upper half-space in the case of constant matrices. Both ofH∞- and PID-controllers are applied successfully in the EV control by J.-Y. Cao and B.-G. Cao 2006 and Cao et al. 2007, which we may unify in our framework. Finally, we mention some similarities between control theory and zeta-functions.



2021 ◽  
Vol 10 (3) ◽  
pp. 135
Author(s):  
Hejie Lin ◽  
Tsung-Wu Lin

The Maxwell-Boltzmann speed distribution is the probability distribution that describes the speeds of the particles of ideal gases. The Maxwell-Boltzmann speed distribution is valid for both un-mixed particles (one type of particle) and mixed particles (two types of particles). For mixed particles, both types of particles follow the Maxwell-Boltzmann speed distribution. Also, the most probable speed is inversely proportional to the square root of the mass. The Maxwell-Boltzmann speed distribution of mixed particles is based on kinetic theory; however, it has never been derived from a mechanical point of view. This paper proves the Maxwell-Boltzmann speed distribution and the speed ratio of mixed particles based on probability analysis and Newton’s law of motion. This paper requires the probability density function (PDF) ψ^ab(u_a; v_a, v_b) of the speed u_a  of the particle with mass M_a  after the collision of two particles with mass M_a  in speed v_a  and mass M_b  in speed v_b . The PDF ψ^ab(u_a; v_a, v_b)  in integral form has been obtained before. This paper further performs the exact integration from the integral form to obtain the PDF ψ^ab(u_a; v_a, v_b)  in an evaluated form, which is used in the following equation to get new distribution P_new^a(u_a)  from old distributions P_old^a(v_a) and P_old^b(v_b). When P_old^a(v_a) and P_old^b(v_b)  are the Maxwell-Boltzmann speed distributions, the integration P_new^a(u_a)  obtained analytically is exactly the Maxwell-Boltzmann speed distribution. P_new^a(u_a)=∫_0^∞ ∫_0^∞ ψ^ab(u_a;v_a,v_b) P_old^a(v_a) P_old^b(v_b) dv_a dv_b,    a,b = 1 or 2 The mechanical proof of the Maxwell-Boltzmann speed distribution presented in this paper reveals the unsolved mechanical mystery of the Maxwell-Boltzmann speed distribution since it was proposed by Maxwell in 1860. Also, since the validation is carried out in an analytical approach, it proves that there is no theoretical limitation of mass ratio to the Maxwell-Boltzmann speed distribution. This provides a foundation and methodology for analyzing the interaction between particles with an extreme mass ratio, such as gases and neutrinos.



1972 ◽  
Vol 45 ◽  
pp. 95-102
Author(s):  
E. I. Kazimirchak-Polonskaya

From the integration formulae of Numerov and Subbotin we have developed and programmed for an electronic computer a particular method for integrating the differential equations of cometary motion in special rectangular coordinates, with a variable step and allowing for all planetary perturbations and nongravitational effects over a time interval of 400 yr. Application of this method and our set of programmes to the investigation of the motion of P/Wolf permits us to eliminate the discontinuity that has hitherto existed in the theory on account of the comet's close approach to Jupiter in 1922.



Author(s):  
Lei Zhang ◽  
Chaofeng Zhang ◽  
Mengya Liu

According to the relationship between truncation error and step size of two implicit second-order-derivative multistep formulas based on Hermite interpolation polynomial, a variable-order and variable-step-size numerical method for solving differential equations is designed. The stability properties of the formulas are discussed and the stability regions are analyzed. The deduced methods are applied to a simulation problem. The results show that the numerical method can satisfy calculation accuracy, reduce the number of calculation steps and accelerate calculation speed.



1994 ◽  
Vol 135 ◽  
pp. 165-196 ◽  
Author(s):  
Masatake Miyake ◽  
Masafumi Yoshino

In the study of ordinary differential equations, Malgrange ([Ma]) and Ramis ([R1], [R2]) established index theorem in (formal) Gevrey spaces, and the notion of irregularity was nicely defined for the study of irregular points. In their studies, a Newton polygon has a great advantage to describe and understand the results in visual form. From this point of view, Miyake ([M2], [M3], [MH]) studied linear partial differential operators on (formal) Gevrey spaces and proved analogous results, and showed the validity of Newton polygon in the study of partial differential equations (see also [Yn]).



Sign in / Sign up

Export Citation Format

Share Document