scholarly journals 16S rRNA Sequencing and Metagenomics Study of Gut Microbiota: Implications of BDB on Type 2 Diabetes Mellitus

Marine Drugs ◽  
2020 ◽  
Vol 18 (9) ◽  
pp. 469
Author(s):  
Liang Zhang ◽  
Jiao Luo ◽  
Xiangqian Li ◽  
Shuju Guo ◽  
Dayong Shi

Gut microbiota has a critical role in metabolic diseases, including type 2 diabetes mellitus (T2DM). 3-bromo-4,5-bis(2,3-dibromo-4,5-dihydroxybenzyl)-1,2-benzenediol (BDB) is a natural bromophenol isolated from marine red alga Rhodomela confervoides. Our latest research showed that BDB could alleviate T2DM in diabetic BKS db mice. To find out whether BDB modulates the composition of the gut microbiota during T2DM treatment, 24 BKS db diabetic mice were randomly grouped to receive BDB (n = 6), metformin (n = 6), or the vehicle (n = 6) for 7 weeks in a blinded manner. Non-diabetic BKS mice (n = 6) were used as normal control. Diabetic mice treated with BDB or metformin demonstrated significant reductions in fasting blood glucose (FBG) levels compared with the vehicle-treated mice in the 7th week. Pyrosequencing of the V3–V4 regions of the 16S rRNA gene revealed the changes of gut microbiota in response to BDB treatment. The result demonstrated short-chain acid (SCFA) producing bacteria Lachnospiraceae and Bacteroides were found to be significantly more abundant in the BDB and metformin treated group than the vehicle-treatment diabetic group. Remarkably, at the genus levels, Akkermansia elevated significantly in the BDB-treatment group. Metagenomic results indicated that BDB may alleviate the metabolic disorder of diabetic mice by promoting propanoate metabolism and inhibiting starch and sucrose metabolism, amino sugar and nucleotide sugar metabolism. In conclusion, our study suggests that the anti-diabetic effect of BDB is closely related to the modulating structure of gut microbiota and the improvement of functional metabolism genes of intestinal microorganisms.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xinqi Song ◽  
Huanhuan Dong ◽  
Zhenzhong Zang ◽  
Wenting Wu ◽  
Weifeng Zhu ◽  
...  

Kudzu is a traditional medicinal dietary supplement, and recent research has shown its significant benefits in the prevention/treatment of type 2 diabetes mellitus (T2DM). Starch is one of the main substances in Kudzu that contribute decisively to the treatment of T2DM. However, the underlying mechanism of the hypoglycemic activity is not clear. In this study, the effect of Kudzu resistant starch supplementation on the insulin resistance, gut physical barrier, and gut microbiota was investigated in T2DM mice. The result showed that Kudzu resistant starch could significantly decrease the value of fasting blood glucose and the levels of total cholesterol, total triglyceride, and high-density lipoprotein, as well as low-density lipoprotein, in the blood of T2DM mice. The insulin signaling sensitivity in liver tissue was analyzed; the result indicated that intake of different doses of Kudzu resistant starch can help restore the expression of IRS-1, p-PI3K, p-Akt, and Glut4 and thus enhance the efficiency of insulin synthesis. Furthermore, the intestinal microorganism changes before and after ingestion of Kudzu resistant starch were also analyzed; the result revealed that supplementation of KRS helps to alleviate and improve the dysbiosis of the gut microbiota caused by T2DM. These results validated that Kudzu resistant starch could improve the glucose sensitivity of T2DM mice by modulating IRS-1/PI3K/AKT/Glut4 signaling transduction. Kudzu resistant starch can be used as a promising prebiotic, and it also has beneficial effects on the gut microbiota structure of T2DM mice.


2019 ◽  
Vol 18 (3) ◽  
pp. 247-255
Author(s):  
Sierra-Puente D. ◽  
Abadi-Alfie S. ◽  
Arakanchi-Altaled K. ◽  
Bogard-Brondo M. ◽  
García-Lascurain M. ◽  
...  

Spices such as cinnamon (Cinnamomum Spp.) have been of interest due to their phytochemical composition that exert hypoglycemic effects with potential for management of type 2 diabetes mellitus (T2DM). We summarize data from 27 manuscripts that include, one book chapter, 3 review articles, 10 randomized controlled trials, 4 systematic reviews with meta-analysis, and 9 preclinical studies. The most frequently used cinnamon variety was Cinnamomum cassia rather than the Cinnamomum zeylanicum, whereas outcomes were defined as fasting blood glucose, glycated hemoglobin, and oral glucose tolerance test. A great variability in methodology such as different doses (from 120 mg to 6 g), duration of intervention, data retrieved and use of different concomitant medication, were found to be key aspects of most of trials and systematic reviews with meta-analysis available to date. Low quality studies have been made in most cases with a lot of heterogeneity clouding significance of results. More research needs to be done in order to yield accurate evidence for evidence-based recommendations. Its use is not currently a reliable nor advisable option for the treatment of T2DM.


Epigenomics ◽  
2021 ◽  
Author(s):  
Marwa Matboli ◽  
Doaa Ibrahim ◽  
Amany H Hasanin ◽  
Mohamed Kamel Hassan ◽  
Eman K Habib ◽  
...  

Aim: To assess isorhamnetin efficacy for diabetic kidney disease in a Type 2 diabetes mellitus rat model, through investigating its effect at the epigenetic, mRNA and protein levels. Materials & methods: Type 2 diabetes mellitus was induced in rats by streptozotocin and high-fat diet. Rats were treated with isorhamnetin (50 mg/kg/d) for 4 or 8 weeks. Fasting blood glucose, renal and lipid profiles were evaluated. Renal tissues were examined by light and electron microscopy. Autophagy genes ( FYCO1, ULK, TECPR1 and  WIPI2) and miR-15b, miR-34a and miR-633 were assessed by qRT-PCR, and LC3A/B by immunoblotting. Results: Isorhamnetin improved fasting blood glucose, renal and lipid profiles with increased autophagosomes in renal tissues. It suppressed miRNA regulation of autophagy genes Conclusion: We propose a molecular mechanism for the isorhamnetin renoprotective effect by modulation of autophagy epigenetic regulators.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hua Zha ◽  
Fengping Liu ◽  
Zongxin Ling ◽  
Kevin Chang ◽  
Jiezuan Yang ◽  
...  

AbstractType 2 diabetes mellitus (T2DM) influences the human health and can cause significant illnesses. The genitourinary microbiome profiles in the T2DM patients remain poorly understood. In the current study, a series of bioinformatic and statistical analyses were carried out to determine the multiple bacteria associated with the more dysbiotic genitourinary microbiomes (i.e., those with lower dysbiosis ratio) in T2DM patients, which were sequenced by Illumina-based 16S rRNA gene amplicon sequencing. All the genitourinary microbiomes from 70 patients with T2DM were clustered into three clusters of microbiome profiles, i.e., Cluster_1_T2DM, Cluster_2_T2DM and Cluster_3_T2DM, with Cluster_3_T2DM at the most dysbiotic genitourinary microbial status. The three clustered T2DM microbiomes were determined with different levels of alpha diversity indices, and driven by distinct urinalysis variables. OTU12_Clostridiales and OTU28_Oscillospira were likely to drive the T2DM microbiomes to more dysbiotic status, while OTU34_Finegoldia could play a vital role in maintaining the least dysbiotic T2DM microbiome (i.e., Cluster_1_T2DM). The functional metabolites K08300_ribonuclease E, K01223_6-phospho-beta-glucosidase and K00029_malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+) were most associated with Cluster_1_T2DM, Cluster_2_T2DM and Cluster_3_T2DM, respectively. The characteristics and multiple bacteria associated with the more dysbiotic genitourinary microbiomes in T2DM patients may help with the better diagnosis and management of genitourinary dysbiosis in T2DM patients.


Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
A. L. Cunningham ◽  
J. W. Stephens ◽  
D. A. Harris

AbstractA strong and expanding evidence base supports the influence of gut microbiota in human metabolism. Altered glucose homeostasis is associated with altered gut microbiota, and is clearly associated with the development of type 2 diabetes mellitus (T2DM) and associated complications. Understanding the causal association between gut microbiota and metabolic risk has the potential role of identifying susceptible individuals to allow early targeted intervention.


2021 ◽  
Vol 49 (3) ◽  
pp. 030006052199759
Author(s):  
Jiajia Tian ◽  
Yanyan Zhao ◽  
Lingling Wang ◽  
Lin Li

Aims To analyze expression of members of the Toll-like receptor (TLR)4/myeloid differentiation primary response 88 (MyD88)/nuclear factor (NF)-κB signaling pathway in the heart and liver in a rat model of type 2 diabetes mellitus (T2DM). Our overall goal was to understand the underlying pathophysiological mechanisms. Methods We measured fasting blood glucose (FBG) and insulin (FINS) in a rat model of T2DM. Expression of members of the TLR4/MyD88/NF-κB signaling pathway as well as downstream cytokines was investigated. Levels of mRNA and protein were assessed using quantitative real-time polymerase chain reaction and western blotting, respectively. Protein content of tissue homogenates was assessed using enzyme-linked immunosorbent assays. Results Diabetic rats had lower body weights, higher FBG, higher FINS, and higher intraperitoneal glucose tolerance than normal rats. In addition, biochemical indicators related to heart and liver function were elevated in diabetic rats compared with normal rats. TLR4 and MyD88 were involved in the occurrence of T2DM as well as T2DM-related heart and liver complications. TLR4 caused T2DM-related heart and liver complications through activation of NF-κB. Conclusions TLR4/MyD88/NF-κB signaling induces production of tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein-1, leading to the heart- and liver-related complications of T2DM.


2021 ◽  
Author(s):  
Rocío Mateo-Gallego ◽  
Isabel Moreno-Indias ◽  
Ana M. Bea ◽  
Lidia Sánchez-Alcoholado ◽  
Antonio J. Fumanal ◽  
...  

An alcohol-free beer including the substitution of regular carbohydrates for low doses of isomaltulose and maltodextrin within meals significantly impacts gut microbiota in diabetic subjects with overweight or obesity.


2011 ◽  
Vol 101 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Aynur Gulcan ◽  
Erim Gulcan ◽  
Sukru Oksuz ◽  
Idris Sahin ◽  
Demet Kaya

Background: We sought to determine the frequency of toenail onychomycosis in diabetic patients, to identify the causative agents, and to evaluate the epidemiologic risk factors. Methods: Data regarding patients’ diabetic characteristics were recorded by the attending internal medicine clinician. Clinical examinations of patients’ toenails were performed by a dermatologist, and specimens were collected from the nails to establish the onycomycotic abnormality. All of the specimens were analyzed by direct microscopy and culture. Results: Of 321 patients with type 2 diabetes mellitus, clinical onychomycosis was diagnosed in 162; 41 of those diagnoses were confirmed mycologically. Of the isolated fungi, 23 were yeasts and 18 were dermatophytes. Significant correlations were found between the frequency of onychomycosis and retinopathy, neuropathy, obesity, family history, and duration of diabetes. However, no correlation was found with sex, age, educational level, occupation, area of residence, levels of hemoglobin A1c and fasting blood glucose, and nephropathy. The most frequently isolated agents from clinical specimens were yeasts. Conclusions: Long-term control of glycemia to prevent chronic complications and obesity and to promote education about the importance of foot and nail care should be essential components in preventing onychomycosis and its potential complications, such as secondary foot lesions, in patients with diabetes mellitus. (J Am Podiatr Med Assoc 101(1): 49–54, 2011)


Sign in / Sign up

Export Citation Format

Share Document