scholarly journals Cysteinolic Acid Is a Widely Distributed Compatible Solute of Marine Microalgae

Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 683
Author(s):  
Simona Fenizia ◽  
Jerrit Weissflog ◽  
Georg Pohnert

Phytoplankton rely on bioactive zwitterionic and highly polar small metabolites with osmoregulatory properties to compensate changes in the salinity of the surrounding seawater. Dimethylsulfoniopropionate (DMSP) is a main representative of this class of metabolites. Salinity-dependent DMSP biosynthesis and turnover contribute significantly to the global sulfur cycle. Using advanced chromatographic and mass spectrometric techniques that enable the detection of highly polar metabolites, we identified cysteinolic acid as an additional widely distributed polar metabolite in phytoplankton. Cysteinolic acid belongs to the class of marine sulfonates, metabolites that are commonly produced by algae and consumed by bacteria. It was detected in all dinoflagellates, haptophytes, diatoms and prymnesiophytes that were surveyed. We quantified the metabolite in different phytoplankton taxa and revealed that the cellular content can reach even higher concentrations than the ubiquitous DMSP. The cysteinolic acid concentration in the cells of the diatom Thalassiosira weissflogii increases significantly when grown in a medium with elevated salinity. In contrast to the compatible solute ectoine, cysteinolic acid is also found in high concentrations in axenic algae, indicating biosynthesis by the algae and not the associated bacteria. Therefore, we add this metabolite to the family of highly polar metabolites with osmoregulatory characteristics produced by phytoplankton.

Marine Drugs ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 42 ◽  
Author(s):  
Simona Fenizia ◽  
Kathleen Thume ◽  
Marino Wirgenings ◽  
Georg Pohnert

Osmoregulation in phytoplankton is attributed to several highly polar low-molecular-weight metabolites. A widely accepted model considers dimethylsulfoniopropionate (DMSP) as the most important and abundant osmotically active metabolite. Using an optimized procedure for the extraction and detection of highly polar metabolites, we expand the group of phytoplankton osmolytes by identifying ectoine in several microalgae. Ectoine is known as a bacterial compatible solute, but, to the best of our knowledge, was never considered as a phytoplankton-derived product. Given the ability of microalgae to take up zwitterions, such as DMSP, we tested the hypothesis that the algal ectoine is derived from associated bacteria. We therefore analyzed methanol extracts of xenic and axenic cultures of two different species of microalgae and could detect elevated concentrations of ectoine in those that harbor associated bacteria. However, also microalgae without an associated microbiome contain ectoine in smaller amounts, pointing towards a dual origin of this metabolite in the algae from their own biosynthesis as well as from uptake. We also tested the role of ectoine in the osmoadaptation of microalgae. In the model diatoms Thalassiosira weissflogii and Phaeodactylum tricornutum, elevated amounts of ectoine were found when cultivated in seawater with salinities of 50 PSU compared to the standard culture conditions of 35 PSU. Therefore, we add ectoine to the family of osmoadaptive metabolites in phytoplankton and prove a new, potentially synergistic metabolic interplay of bacteria and algae.


1988 ◽  
Vol 34 (11) ◽  
pp. 2385-2386
Author(s):  
D S Sheriff ◽  
M el Fakhri

Abstract We describe a Libyan family with beta-thalassemia trait associated with unusually high concentrations of hemoglobin A2 and hypercholesterolemia. The family consists of the father, mother, and three sons. The marriage was consanguineous. The concentrations of total cholesterol and low-density lipoprotein cholesterol in serum were very high in two sons who also had widespread xanthomas. The erythrocyte membranes showed a high cholesterol/phospholipid ratio, with no significant susceptibility to lipid peroxidation in vitro.


2020 ◽  
Vol 110 (4) ◽  
pp. 423-437 ◽  
Author(s):  
Muhammad Fahim Raza ◽  
Zhichao Yao ◽  
Shuai Bai ◽  
Zhaohui Cai ◽  
Hongyu Zhang

AbstractThe family Tephritidae (order: Diptera), commonly known as fruit flies, comprises a widely distributed group of agricultural pests. The tephritid pests infest multiple species of fruits and vegetables, resulting in huge crop losses. Here, we summarize the composition and diversity of tephritid gut-associated bacteria communities and host intrinsic and environmental factors that influence the microbiome structures. Diverse members of Enterobacteriaceae, most commonly Klebsiella and Enterobacter bacteria, are prevalent in fruit flies guts. Roles played by gut bacteria in host nutrition, development, physiology and resistance to insecticides and pathogens are also addressed. This review provides an overview of fruit fly microbiome structure and points to diverse roles that it can play in fly physiology and survival. It also considers potential use of this knowledge for the control of economically important fruit flies, including the sterile insect technique and cue-lure baiting.


2016 ◽  
Vol 13 (1) ◽  
pp. 127 ◽  
Author(s):  
Yue Liu ◽  
Chun-Ying Liu ◽  
Gui-Peng Yang ◽  
Hong-Hai Zhang ◽  
Sheng-hui Zhang

Environmental context Dimethylsulfide (DMS) is a climatically important biogenic trace gas that is emitted from oceans. This research focuses on the spatiotemporal distributions of DMS and its related compounds, i.e. dimethylsulfoniopropionate (DMSP) and acrylic acid (AA), and the influencing factors in the Yellow Sea and the Bohai Sea during autumn. In addition, the sea-to-air flux of DMS, kinetic responses of DMSP consumption as well as DMS and AA production are also investigated. This study is helpful in understanding the marine sulfur cycle in marginal seas in China. Abstract The biogeochemistry of dimethylsulfoniopropionate (DMSP), dimethylsulfide (DMS) and acrylic acid (AA) in the Yellow Sea (YS) and the Bohai Sea (BS) was investigated in November 2013. The concentrations (and ranges) of total DMSP (DMSPt), dissolved DMSP (DMSPd), DMS and AA in surface waters were 30.71 (1.07–122.50), 6.60 (0.85–35.67), 1.48 (0.53–5.32) and 42.2 (13.8–352.8) nmol L–1 respectively. The concentrations of DMSPd and AA were positively correlated with chlorophyll-a levels, which suggests that phytoplankton biomass has an important function in controlling DMSPd and AA distributions. Furthermore, DMS and AA concentrations revealed significant positive relationships with DMSPd concentrations. The average ratios of AA/(DMSP+AA) and DMS/AA were 53.98 and 7.62% respectively. The vertical profiles of DMSP, DMS and AA were characterised by high concentrations that mostly occur near the surface. Even under highly variable hydrographic conditions, a positive relationship was observed between DMSPt and chlorophyll-a concentrations. The rates of DMSPd consumption, as well as DMS and AA production, significantly varied with marine environments. The sea-to-air fluxes of DMS from the YS and the BS to the atmosphere were estimated to be in the range of 3.01 to 6.91μmol m–2day–1.


2017 ◽  
Vol 76 (2) ◽  
pp. 386-395 ◽  
Author(s):  
Te Wang ◽  
Jian Li ◽  
Ling Hua Zhang ◽  
Ying Yu ◽  
Yi Min Zhu

To improve the efficiency of simultaneous heterotrophic nitrification and aerobic denitrification (SND) at high concentrations of NaCl and ammonia nitrogen (NH4+—N), we investigated the SND characteristics of Halomonas bacteria with the ability to synthesize the compatible solute ectoine. Halomonas sp. strain B01, which was isolated, screened and identified in this study, could simultaneously remove nitrogen (N) by SND and synthesize ectoine under high NaCl conditions. Gene cloning and sequencing analysis indicated that this bacterial genome contains ammonia monooxygenase (amoA) and nitrate reductase (narH) genes. Optimal conditions for N removal in a solution containing 600 mg/L NH4+–N were as follows: sodium succinate supplied as organic carbon (C) source at a C/N ratio of 5, pH 8 and shaking culture at 90 rpm. The N removal rate was 96.0% under these conditions. The SND by Halomonas sp. strain B01 was performed in N removal medium containing 60 g/L NaCl and 4,000 mg/L NH4+–N; after 180 h the residual total inorganic N concentration was 21.7 mg/L and the N removal rate was 99.2%. Halomonas sp. strain B01, with the ability to synthesize the compatible solute ectoine, could simultaneously tolerate high concentrations of NaCl and NH4+–N and efficiently perform N removal by SND.


2005 ◽  
Vol 69 (1) ◽  
pp. 155-194 ◽  
Author(s):  
Anja Brencic ◽  
Stephen C. Winans

SUMMARY Diverse interactions between hosts and microbes are initiated by the detection of host-released chemical signals. Detection of these signals leads to altered patterns of gene expression that culminate in specific and adaptive changes in bacterial physiology that are required for these associations. This concept was first demonstrated for the members of the family Rhizobiaceae and was later found to apply to many other plant-associated bacteria as well as to microbes that colonize human and animal hosts. The family Rhizobiaceae includes various genera of rhizobia as well as species of Agrobacterium. Rhizobia are symbionts of legumes, which fix nitrogen within root nodules, while Agrobacterium tumefaciens is a pathogen that causes crown gall tumors on a wide variety of plants. The plant-released signals that are recognized by these bacteria are low-molecular-weight, diffusible molecules and are detected by the bacteria through specific receptor proteins. Similar phenomena are observed with other plant pathogens, including Pseudomonas syringae, Ralstonia solanacearum, and Erwinia spp., although here the signals and signal receptors are not as well defined. In some cases, nutritional conditions such as iron limitation or the lack of nitrogen sources seem to provide a significant cue. While much has been learned about the process of host detection over the past 20 years, our knowledge is far from being complete. The complex nature of the plant-microbe interactions makes it extremely challenging to gain a comprehensive picture of host detection in natural environments, and thus many signals and signal recognition systems remain to be described.


1997 ◽  
Vol 36 (6-7) ◽  
pp. 15-24 ◽  
Author(s):  
D. W. Yerkes ◽  
S. Boonyakitsombut ◽  
R. E. Speece

In this paper, the compatible solute betaine is investigated for its antagonistic effects toward sodium toxicity in anaerobic methanogenic systems. Concentrations of betaine as low as 1 mM are shown to be effective at reducing the toxicity symptoms of high concentrations of sodium in the following anaerobic reactor systems: batch reactors seeded with a Methanosarcina enriched culture and batch reactors seeded with a Methanothrix culture, where the acclimation time or lag time before methane production begins is reduced significantly; CSTRs, where the acetic acid uptake rate increases dramatically; fluidized bed reactors, where gas production and pH increase and effluent COD and volatile acid concentration decrease; and UASB reactors, where gas production increases markedly. Because the phenomenon of sodium toxicity antagonism by betaine was demonstrated in anaerobic batch reactors, CSTRs, fluidized bed reactors, and UASB reactors, the usefulness of betaine in an industrial application may be feasible.


2007 ◽  
Vol 74 (4) ◽  
pp. 1019-1029 ◽  
Author(s):  
Marco Blöthe ◽  
Denise M. Akob ◽  
Joel E. Kostka ◽  
Kathrin Göschel ◽  
Harold L. Drake ◽  
...  

ABSTRACT Lakes formed because of coal mining are characterized by low pH and high concentrations of Fe(II) and sulfate. The anoxic sediment is often separated into an upper acidic zone (pH 3; zone I) with large amounts of reactive iron and a deeper slightly acidic zone (pH 5.5; zone III) with smaller amounts of iron. In this study, the impact of pH on the Fe(III)-reducing activities in both of these sediment zones was investigated, and molecular analyses that elucidated the sediment microbial diversity were performed. Fe(II) was formed in zone I and III sediment microcosms at rates that were approximately 710 and 895 nmol cm−3 day−1, respectively. A shift to pH 5.3 conditions increased Fe(II) formation in zone I by a factor of 2. A shift to pH 3 conditions inhibited Fe(II) formation in zone III. Clone libraries revealed that the majority of the clones from both zones (approximately 44%) belonged to the Acidobacteria phylum. Since moderately acidophilic Acidobacteria species have the ability to oxidize Fe(II) and since Acidobacterium capsulatum reduced Fe oxides at pHs ranging from 2 to 5, this group appeared to be involved in the cycling of iron. PCR products specific for species related to Acidiphilium revealed that there were higher numbers of phylotypes related to cultured Acidiphilium or Acidisphaera species in zone III than in zone I. From the PCR products obtained for bioleaching-associated bacteria, only one phylotype with a level of similarity to Acidithiobacillus ferrooxidans of 99% was obtained. Using primer sets specific for Geobacteraceae, PCR products were obtained in higher DNA dilutions from zone III than from zone I. Phylogenetic analysis of clone libraries obtained from Fe(III)-reducing enrichment cultures grown at pH 5.5 revealed that the majority of clones were closely related to members of the Betaproteobacteria, primarily species of Thiomonas. Our results demonstrated that the upper acidic sediment was inhabited by acidophiles or moderate acidophiles which can also reduce Fe(III) under slightly acidic conditions. The majority of Fe(III) reducers inhabiting the slightly acidic sediment had only minor capacities to be active under acidic conditions.


2000 ◽  
Vol 66 (4) ◽  
pp. 1572-1579 ◽  
Author(s):  
S. Barth ◽  
M. Huhn ◽  
B. Matthey ◽  
A. Klimka ◽  
E. A. Galinski ◽  
...  

ABSTRACT The standard method of producing recombinant proteins such as immunotoxins (rITs) in large quantities is to transform gram-negative bacteria and subsequently recover the desired protein from inclusion bodies by intensive de- and renaturing procedures. The major disadvantage of this technique is the low yield of active protein. Here we report the development of a novel strategy for the expression of functional rIT directed to the periplasmic space of Escherichia coli. rITs were recovered by freeze-thawing of pellets from shaking cultures of bacteria grown under osmotic stress (4% NaCl plus 0.5 M sorbitol) in the presence of compatible solutes. Compatible solutes, such as glycine betaine and hydroxyectoine, are low-molecular-weight osmolytes that occur naturally in halophilic bacteria and are known to protect proteins at high salt concentrations. Adding 10 mM glycine betaine for the cultivation of E. coliunder osmotic stress not only allowed the bacteria to grow under these otherwise inhibitory conditions but also produced a periplasmic microenvironment for the generation of high concentrations of correctly folded rITs. Protein purified by combinations of metal ion affinity and size exclusion chromatography was substantially stabilized in the presence of 1 M hydroxyecotine after several rounds of freeze-thawing, even at very low protein concentrations. The binding properties and cytotoxic potency of the rITs were confirmed by competitive experiments. This novel compatible-solute-guided expression and purification strategy might also be applicable for high-yield periplasmic production of recombinant proteins in different expression systems.


Sign in / Sign up

Export Citation Format

Share Document