scholarly journals Effects of Zumba® and Aquagym on Bone Mass in Inactive Middle-Aged Women

Medicina ◽  
2019 ◽  
Vol 55 (1) ◽  
pp. 23
Author(s):  
Esther Ubago-Guisado ◽  
Javier Sánchez−Sánchez ◽  
Sara Vila−Maldonado ◽  
Leonor Gallardo

Background and objectives: Regular exercise may stimulate bone formation and reduce the loss of bone mass in premenopausal women. This study aims to evaluate the effect of high-impact physical activity (Zumba®) and low-impact physical activity (Aquagym) on bone mass in inactive middle-aged women. Materials and methods: Fifty-five healthy inactive women (30–50 years old) were recruited in Spain in 2016 and were randomly allocated into one of three groups: High impact group (HIG: n = 15), low impact group (LIG: n = 12) and control group (CG: n = 28). HIG and LIG were recruited from Madrid and the CG from Toledo. HIG and LIG completed a 12-week intervention program with three 40′ sessions per week of Zumba® or Aquagym; respectively. Dual energy X-ray absorptiometry (DXA) measured bone mineral content (BMC) and areal bone mineral density (aBMD) at total body less head (TBLH), lumbar spine and right hip. Results: Post-intervention adjusted data showed no significant differences in BMC between any of the groups nor in aBMD between HIG and LIG. Interestingly; significant differences for the HIG vs. CG were found in the change in total hip aBMD (1.76% vs. −0.44%), femoral neck aBMD (1.80% vs. −2.71%), and intertrochanter aBMD (2.03% vs. −0.50%). Moreover, significant differences for the LIG vs. CG were also found in the change in femoral neck aBMD (−0.54% vs. −2.71%). Conclusions: The regular practice of Zumba® and Aquagym might reduce the progressive deterioration of bone mass in inactive middle-aged women

Author(s):  
Björn E. Rosengren ◽  
Erik Lindgren ◽  
Lars Jehpsson ◽  
Magnus Dencker ◽  
Magnus K. Karlsson

AbstractDaily school physical activity (PA) improves musculoskeletal traits. This study evaluates whether the benefits remain 4 years after the intervention. We followed 45 boys and 36 girls who had had 40 min PA/school day during the nine compulsory school years and 21 boys and 22 girls who had had 60 min PA/school week (reference), with measurements at baseline and 4 years after the program terminated. Bone mineral content (BMC; g) and bone mineral density (BMD; g/cm2) were measured by dual-energy X-ray absorptiometry and knee flexion peak torque relative to total body weight (PTflexTBW) at a speed of 180 degrees/second with a computerized dynamometer. Group differences are presented as mean differences (adjusted for sex and duration of follow-up period) with 95% confidence intervals. The total gain bone mass [mean difference in spine BMC +32.0 g (14.6, 49.4) and in arms BMD of +0.06 g/cm2 (0.02, 0.09)] and gain in muscle strength [mean difference in PTflex180TBW +12.1 (2.0, 22.2)] were greater in the intervention than in the control group. There are still 4 years after the intervention indications of benefits in both bone mass and muscle strength gain. Daily school PA may counteract low bone mass and inferior muscle strength in adult life. ClinicalTrials.gov.NCT000633828 retrospectively registered 2008-11-03


2018 ◽  
Vol 50 (11) ◽  
pp. 816-821 ◽  
Author(s):  
Małgorzata Marchelek-Mysliwiec ◽  
Magda Wisniewska ◽  
Monika Nowosiad-Magda ◽  
Krzysztof Safranow ◽  
Ewa Kwiatkowska ◽  
...  

AbstractPatients with early-stage chronic kidney disease (CKD) are susceptible to changes in metabolic processes. Partial loss of kidney function leads to homoeostatic disturbances in bone and fatty tissue. The aim of this study was to investigate the association between plasma concentrations of Klotho protein, FGF23, leptin, adiponectin, osteocalcin, and bone mineral density (BMD) in patients with CKD in the pre-dialysis period. The study involved 52 patients with CKD and 23 patients with no kidney disease. In both groups, BMD, body mass index and serum or plasma concentrations of lipids, glucose, creatinine, calcium, phosphorus, parathormone, leptin, adiponectin, osteocalcin, Klotho, and FGF23 were measured. The group with CKD had statistically significant higher concentrations of leptin (p<0.001), parathormone (p<0.001), and osteocalcin (p<0.001) in comparison with the control group. Patients with CKD also had statistically significant lower BMD in the femoral neck in comparison with the control group. Osteocalcin correlated negatively with BMD. The results of our study suggest that elevated osteocalcin is the most sensitive marker of decreased bone mass in patients with CKD. Osteocalcin correlated negatively with BMD and GFR. The loss of bone mass in CKD patients was greatest in the femoral neck.


2021 ◽  
Vol 11 (2) ◽  
pp. 846
Author(s):  
Sung-Woo Kim ◽  
Myong-Won Seo ◽  
Hyun-Chul Jung ◽  
Jong-Kook Song

This study examined the effects of high-impact weight-bearing exercise on bone mineral density (BMD) and bone metabolic markers in middle-aged premenopausal women. Forty middle-aged premenopausal women were initially enrolled, but thirty-one participants (40.34 ± 3.69 years) completed in the study. The subjects were randomly divided into two groups including the high-impact weight-bearing exercise group (HWE, n = 14) and control group (CON, n = 17). The HWE group participated in the exercise for 50 min a day, three days per week for four months, while the CON group maintained their regular lifestyle. The HWE program included 10 different high-impact weight-bearing exercises such as jumping and running. BMD was measured using DXA (Hologic, QDR 4500W, Marlborough, MA, USA). The bone metabolic markers including serum 25-(OH) D, intact parathyroid hormone (PTH), osteoprotegerin (OPG), osteopontin (OPN), receptor activator of nuclear factor κB ligand (RANKL), osteocalcin (OC), C-terminal telopeptide of type 1 collagen (CTX), and calcium were analyzed. The results showed that the BMDs of femur, lumbar, and forearm did not significantly change during the intervention period in both the HWE and CON groups. A significant decrease in bone formation markers such as OC (F = 10.514, p = 0.003, ηp2 = 0.266) and an increase in bone resorption marker including CTX (F = 8.768, p = 0.006, ηp2 = 0.232) were found only in the CON group, while these values did not change in the HWE group. There was a significant increase in serum 25-(OH) D (F = 4.451, p = 0.044, ηp2 = 0.133) in the HWE group. Our findings suggest that four months of HWE is not sufficient to improve BMD and bone metabolic markers, but this impact exercise program may prevent the age-associated changes in bone turnover markers in middle-aged premenopausal women.


Author(s):  
Ángel Matute-Llorente ◽  
Alejandro González-Agüero ◽  
Germán Vicente-Rodríguez ◽  
Luís B. Sardinha ◽  
Fátima Baptista ◽  
...  

AbstractBackground:Low bone mineral density (BMD) has been frequently described in subjects with Down syndrome (DS). Reduced physical activity (PA) levels may contribute to low BMD in this population. The objective of the study was to investigate whether PA levels were related to the femoral neck bone mass distribution in a sample of 14 males and 12 females with DS aged 12–18 years.Methods:BMD was evaluated by dual energy X-ray absorptiometry (DXA) at the integral, superolateral and inferomedial femoral neck regions and PA levels were assessed by accelerometry. The BMDs between the sexes and PA groups (below and above the 50th percentile of the total PA) were compared using independent t-tests and analyses of covariance (ANCOVAs) controlling for age, height and body weight.Results:No differences were found between the BMDs of males and females in any femoral neck region (p>0.05). Females with higher PA levels demonstrated increased integral (0.774 g/cmConclusions:This investigation shows that females accumulating more total PA presented increased BMDs at the integral and superolateral femoral neck regions (14.1% and 17.0%, respectively) when compared to their less active peers. These data highlight the importance of PA in females with DS to counteract their low bone mass and to improve their bone health.


2007 ◽  
Vol 19 (4) ◽  
pp. 444-458 ◽  
Author(s):  
Miia Suuriniemi ◽  
Harri Suominen ◽  
Anitta Mahonen ◽  
Markku Alén ◽  
Sulin Cheng

This follow-up study confirms our previous findings that the ER-α PvuII polymorphism (Pp) modulates the association between exercise and bone mass. The differences in bone properties of girls with consistently low physical activity (LLPA) and consistently high physical activity (HHPA) were evident only in those bearing the heterozygote ER-α genotype (Pp). In particular, areal bone mineral density of the total femur, bone mineral content and areal bone mineral density of the femoral neck, and bone mineral content and cortical thickness of the tibia shaft were significantly (p < .05) lower in the Pp girls with LLPA than in their HHPA counterparts. These findings might partly explain the genetic basis of human variation associated with exercise training.


Author(s):  
Hsin-Hua Chou ◽  
Sao-Lun Lu ◽  
Sen-Te Wang ◽  
Ting-Hsuan Huang ◽  
Sam Li-Sheng Chen

The association between osteoporosis and periodontal disease (PD) has been revealed by previous studies, but there have been few studies on the association in younger adults. We enrolled a total of 7298 adults aged 40 to 44 who underwent PD screening between 2003 and 2008. Data on quantitative ultrasound for the measurement of bone mineral density (BMD) were collected for the diagnostic criteria of osteopenia and osteoporosis. The Community Periodontal Index (CPI) was measured for defining PD. A multiple logistic regression model was used to assess the effect of low bone mass on the risk of PD. Of 7298 enrollees, 31% had periodontal pockets >3 mm, 36.2% had osteopenia, and 2.1% had osteoporosis. The 39.8% of PD prevalence was high in adults with osteoporosis, followed by 33.3% in osteopenia. A negative association was found between BMD and CPI value (p < 0.0001). Low bone mass was associated with the risk of PD (adjusted OR: 1.13; 95% CI:1.02–1.26) after adjusting the confounding factors, including age, gender, education level, overweight, smoking status, past history of osteoporosis, and diabetes mellitus. An association between BMD and PD among young adults was found. An intervention program for the prevention of PD and osteoporosis could be considered starting in young adults.


1995 ◽  
Vol 74 (1) ◽  
pp. 125-139 ◽  
Author(s):  
Warren T. K. Lee ◽  
Sophie S. F. Leung ◽  
Doram. Y. Leung ◽  
Heidi S. Y. Tsang ◽  
Joseph Lau ◽  
...  

There is limited information relating Ca intake to bone and height acquisition among Oriental children who consume little or even no milk. The present controlled study investigated the acquisition of bone mass and height of Chinese children with an initial Ca intake of approximately 567 mg/d who were supplemented to about 800 mg/d. Eighty-four 7-year-old Hong Kong Chinese children underwent an 18-month randomized, double-blind, controlled Ca-supplementation trial. The children were randomized to receive either 300 mg elemental Ca or a placebo tablet daily. Bone mass of the distal one-third radius was measured by single-photon absorptiometry, lumbar spine and femoral neck were determined using dual-energy X-ray absorptiometry. Measurements were repeated 6-monthly. Baseline serum 25-hydroxycholecalciferol concentration and physical activity were also assessed. Baseline Ca intakes of the study group and controls were respectively 571 (SD 326) and 563 (SD 337) mg/d. There were no significant differences in baseline serum 25-hydroxycholecalciferol concentration (P= 0·71) and physical activity (P= 0·36) between the study and control groups. After 18 months the study group had significantly greater increases in lumbar-spinal bone mineral content (20·9v. 16. 34%;P= 0·035), lumbar-spinal area (11·16v. 8·71%;P= 0middot;049), and a moderately greater increment in areal bone mineral density of the radius (7·74 0·600%;P= 0.081) when compared with the controls. The results confirm a positive effect of Ca on bone mass of the spine and radius but no effects on femoral-neck and height increase. A longer trial is warranted to confirm a positive Ca effect during childhood that may modify future peak bone mass.


2005 ◽  
Vol 8 (3-4) ◽  
pp. 162-165 ◽  
Author(s):  
M. Mędraś ◽  
M. Słowińska-Lisowska ◽  
P. Jóźków

2018 ◽  
Vol 104 (3) ◽  
pp. 892-899 ◽  
Author(s):  
Joseph M Kindler ◽  
Andrea J Lobene ◽  
Kara A Vogel ◽  
Berdine R Martin ◽  
Linda D McCabe ◽  
...  

Abstract Context Insulin resistance is an adverse health outcome that accompanies obesity. Fat mass is negatively associated with the bone mass after adjustment for confounders. Insulin resistance might be an intermediary in this relationship. Objective To determine whether insulin resistance is an intermediary in the relationship between adiposity and bone mass in adolescents. Design Cross-sectional secondary analysis of baseline data from a previous randomized trial. Setting University research facility. Participants A total of 240 adolescents (68% female), aged 7 to 15 years. Main Outcome Measures Using dual energy x-ray absorptiometry, bone mineral content (BMC), areal bone mineral density, lean mass, and fat mass were measured. Skeletal sites of interest included the total body and lumbar spine (LS). Waist circumference was measured using an anthropometric tape measure. Insulin and glucose were measured in fasting sera, and the homeostasis model assessment of insulin resistance (HOMA-IR) was calculated. Path analysis was performed to determine whether the relationship between adiposity and bone was mediated through insulin resistance. Results Fat mass (r = 0.467; P &lt; 0.001) and waist circumference (r = 0.487; P &lt; 0.001) correlated positively with HOMA-IR. Controlling for race, sex, maturation, lean mass, and height, fat mass, waist circumference, and HOMA-IR were negatively associated with LS BMC and total body areal bone mineral density (P &lt; 0.05 for all). Additionally, path models for fat mass (95% CI, −5.893 to −0.956) and waist circumference (95% CI, −15.473 to −2.124) showed a negative relationship with LS BMC via HOMA-IR. Conclusions These results support an intermediary role of insulin resistance in the relationship between adiposity and LS bone mass.


Sign in / Sign up

Export Citation Format

Share Document