scholarly journals Short-Term Effects of Air Pollution on Coronary Events in Strasbourg, France—Importance of Seasonal Variations

2020 ◽  
Vol 8 (3) ◽  
pp. 31
Author(s):  
Baptiste Vaudrey ◽  
Marie Mielcarek ◽  
Erik Sauleau ◽  
Nicolas Meyer ◽  
Benjamin Marchandot ◽  
...  

The aim of this study, is to investigate the effects of a short-term exposure to air pollutants, as assessed by Nitrogen dioxide (NO2), Particulate Matter PM2,5 and PM10 concentrations, on coronary event onsets in Strasbourg, France. An observational, analytical, retrospective, epidemiological study was conducted in Strasbourg between 1 January 2012 and 31 December 2014. Higher daily coronary events rates were evidenced when NO2 concentrations were measured above 40 µg/m3 (1.258 (95% CI 1.142–1.374) vs. 1.110 (95% CI 1.033–1.186); p = 0.015). The NO2 concentration was higher than 30 µg/m3 for 677 days (61.8%). Higher daily coronary events rates were evidenced when NO2 concentrations were measured above 30 µg/m3 (1.208 (95% CI 1.128–1.289) vs. 1.067 (95% CI 0.961–1.172) p = 0.009). A marked seasonality of NO2, PM2.5, and PM10 concentrations characterized by an increase during winter and a decrease during the summer could be established. The seasonality of coronary events was evidenced simultaneously. After adjustments were made to account for the time and the month, no independent impact of NO2, PM2.5 or PM10 on daily coronary events could be demonstrated.

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
A.M Adeoye ◽  
A Fakunle ◽  
O Aderonmu ◽  
B Tayo

Abstract Introduction While blunted nocturnal blood pressure is a major risk factor for cardiovascular events, limited information exist on the association between indoor particulate and circadian blood pressure variation. We report the association of short-time exposure to PM2.5 and PM10 with blunted nocturnal blood pressure among hypertensive adults in Ibadan. Purpose This study was to determine the association between short time exposure to air particulates and blunted nocturnal blood pressure among people of African descent. Methods We conducted a cross-sectional study among fifty hypertensive cases attending our University College Hospital. A 24-hours blood pressure (BP) monitoring was carried out at the same time as indoor particulate matter monitoring in their homes. Exposure to indoor fine particles (PM2.5) and thoracic particles (PM10) was estimated using a real-time particle counter and compared to the World Health Organization (WHO) 24-hours threshold of 25 μg/m3 and 50 μg/m3 for PM2.5 and PM10 respectively. All monitoring was carried out over a 24-hours period during the wet season. Linear regression model was fitted to determine predictors of non-dipping hypertension. Results Of the 50 hypertensive patients studied, 5 (10.0%), 39 (78.0%), 6 (12.0%) were reverse dippers, non-dippers and dippers respectively. The mean indoor PM2.5 (44.17±19.18 μg/m3) and PM10 (60.10±27.13 μg/m3) among the non-dippers were significantly higher than values obtained among dippers (PM2.5 = 22.97±10.19 μg/m3; PM10 = 29.51±12.74 μg/m3); p<0.0001, and the WHO threshold limit. More non-dippers than dippers (54.5% vs 37.8%) used unimproved fuel such as firewood for cooking. PM10 was an independent predictors of non-dipping status in our regression analysis. Conclusion Short-term exposure to indoor PM air pollution was associated with blunted nocturnal blood pressure. Therefore air pollution reduction strategies through improved cooking pattern is advocated in order to prevent future cardiovascular events. Funding Acknowledgement Type of funding source: None


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Kent G Meredith ◽  
C A Pope ◽  
Joseph B Muhlestein ◽  
Jeffrey L Anderson ◽  
John B Cannon ◽  
...  

Introduction: Air pollution is associated with greater cardiovascular event risk, but which types of events and the specific at-risk individuals remain unknown. Hypothesis: Short-term exposure to fine particulate matter (PM 2.5 ) is associated with greater risk of acute coronary syndromes (ACS), including ST elevation myocardial infarction (STEMI), non-ST elevation myocardial infarction (NSTEMI), and unstable angina (USA). Methods: ACS events treated at Intermountain Healthcare hospitals in Utah’s urban Wasatch Front region between September 10, 1993 and May 15, 2014 were included if the patient resided in that area (N=16,314). A time-stratified case-crossover design was performed matching the PM 2.5 exposure at the time of event with periods when the event did not occur (referent), for STEMI, NSTEMI, and USA. Patients served as their own controls. Odds ratios (OR) were determined for exposure threshold versus linear, non-threshold models. Results: In STEMI, NSTEMI, and USA patients, age averaged 62, 64, and 63 years; males constituted 73%, 66%, and 68%; current or past smoking was prevalent in 33%, 25%, and 26%; and significant coronary artery disease (CAD) (defined as ≥1 coronary with ≥70% stenosis) was found among 95%, 75%, and 74%, respectively. Short-term PM 2.5 exposure was associated with ACS events (Table). Conclusions: Short-term exposure of PM 2.5 was strongly associated with greater risk of STEMI, especially in patients with angiographic CAD. No association with NSTEMI was found, and only a weak effect for USA. This study supports a PM 2.5 exposure threshold of 25 μg/m 3 , below which little exposure effect is seen, while the effect is linear above that level.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
You-Jung Choi ◽  
Sun-Hwa Kim ◽  
Si-Hyuck Kang ◽  
Sun-Young Kim ◽  
Ok-Jin Kim ◽  
...  

AbstractElevated blood pressure (BP) has been proposed as a possible pathophysiological mechanism linking exposure to ambient air pollution and the increased risk of cardiovascular mortality and morbidity. In this study, we investigated the hourly relationship between ambient air pollutants and BP. BP measurements were extracted from the electronic health record database of the Seoul National University Bundang Hospital from February 2015 to June 2017. A total of 98,577 individual BP measurements were matched to the hourly levels of air pollutants. A generalized additive model was constructed for hour lags of 0–8 of air pollutants adjusting for age, sex, meteorological variables, and time trend. Systolic BP was shown to be significantly lower at 2–4 hours and 3–5 hours after increased levels of SO2 and CO, respectively (0.24 mmHg and 0.26 mmHg for an interquartile range, respectively). In contrast, O3 and NO2 were associated with significantly increased systolic BP at 3–5 lag hours and at 0–2 lag hours, respectively. BP elevation in association with O3 and NO2 was shown to be significantly greater in hypertensive patients than normotensive subjects. Our findings suggest that short-term exposure to air pollution may be associated with elevated BP.


2020 ◽  
Vol 8 ◽  
Author(s):  
Nurshad Ali ◽  
Farjana Islam

The outbreak of COVID-19 has created a serious public health concern worldwide. Although, most of the regions around the globe have been affected by COVID-19 infections; some regions are more badly affected in terms of infections and fatality rates than others. The exact reasons for such variations are not clear yet. This review discussed the possible effects of air pollution on COVID-19 infections and mortality based on some recent evidence. The findings of most studies reviewed here demonstrate that both short-term and long-term exposure to air pollution especially PM2.5 and nitrogen dioxide (NO2) may contribute significantly to higher rates of COVID-19 infections and mortalities with a lesser extent also PM10. A significant correlation has been found between air pollution and COVID-19 infections and mortality in some countries in the world. The available data also indicate that exposure to air pollution may influence COVID-19 transmission. Moreover, exposure to air pollution may increase vulnerability and have harmful effects on the prognosis of patients affected by COVID-19 infections. Further research should be conducted considering some potential confounders such as age and pre-existing medical conditions along with exposure to NO2, PM2.5 and other air pollutants to confirm their detrimental effects on mortalities from COVID-19.


2019 ◽  
Vol 11 (1) ◽  
pp. 9-10
Author(s):  
B. Vaudrey ◽  
M. Mielcarek ◽  
E. Sauleau ◽  
N. Meyer ◽  
B. Marchandot ◽  
...  

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1415.1-1415
Author(s):  
F. Ingegnoli ◽  
T. Ubiali ◽  
T. Schioppo ◽  
V. Longo ◽  
S. Iodice ◽  
...  

Background:Air pollution is believed to cause oxidative stress and systemic inflammation, that could trigger autoimmunity in rheumatoid arthritis (RA). Several epidemiological studies investigated the possible role of air pollution in the outbreak of RA with controversial results. As far as we know, studies on the effects on disease activity of short-term exposure have not been published.Objectives:To evaluate the impact of short-term exposure to air pollutants (daily mean PM10, PM2.5, NO2and O3) on disease activity in patients with RA.Methods:Consecutive patients with RA (ACR/EULAR Criteria 2010) resident in Lombardy (Italy) were enrolled. In each patient Disease Activity Score on 28 joints (DAS28), Simple Disease Activity Index (SDAI) were assessed. Daily PM10, PM2.5, NO2and O3concentrations, estimated by Regional Environmental Protection Agency at municipality resolution, were used to assign short-term exposure from day of visit back to 14 days. Multivariable linear regression models were performed to identify the day of the pollutants independently associated with disease activity indices, adjusting for the variables significant at the univariate analysis. β coefficients were reported for 1 μg/m3increments of pollutants’ concentrations.Results:422 RA patients were enrolled in the study between January and June 2018: 81.5% females, mean age 58.2±13.3 years, mean disease duration 16.1±11.5 years, 27.3% current smokers, 59.5% RF positivity, 54.5% ACPA positivity. Sparse punctual statistically significant negative associations emerged at the multivariate analysis between PM10, PM2.5, NO2and the outcomes, although with very low estimates, whereas positive associations resulted for O3.Afterwards patients were stratified in 3 subgroups according to their ongoing treatment (no therapy, n=25, conventional synthetic Disease Modifying anti-Rheumatic Drugs -DMARDs-, n=108 and biological or targeted synthetic DMARDs, n=289). A statistical significance was found by analysing the influence of therapy on the interaction between PM2.5and DAS28 (Figure below): a positive trend between PM2.5and DAS28 appeared in the first two groups (no therapy, 0.013±0.007, p=0.06 and csDMARDs, 0.006±0.004, p=0.17), whereas a statistically significant inverse association was seen in the b/tsDMARDs group (-0.005±0.002, p=0.01). Therapy interaction was particularly evident in several days before the visit also for O3.Conclusion:The changes of the outcome measures related to the increase of the pollutants’ levels did not reach the minimal clinically important difference, therefore air pollution seems barely relevant on disease activity once the loss of tolerance is established in RA. O3and PM/NO2always exhibit an opposite performance having inversely proportional atmospheric concentrations, whereas the biological role of this substance is still matter of debate and will need further understanding. Therapy seems to be able to interact with the relation between air pollutants and the parameters considered.Disclosure of Interests:Francesca Ingegnoli: None declared, Tania Ubiali: None declared, Tommaso Schioppo: None declared, Valentina Longo: None declared, Simona Iodice: None declared, Ennio Giulio Favalli Consultant of: Consultant and/or speaker for BMS, Eli-Lilly, MSD, UCB, Pfizer, Sanofi-Genzyme, Novartis, and Abbvie, Speakers bureau: Consultant and/or speaker for BMS, Eli-Lilly, MSD, UCB, Pfizer, Sanofi-Genzyme, Novartis, and Abbvie, Orazio De Lucia: None declared, Antonella Murgo: None declared, Valentina Bollati: None declared, Roberto Caporali Consultant of: AbbVie; Gilead Sciences, Inc.; Lilly; Merck Sharp & Dohme; Celgene; Bristol-Myers Squibb; Pfizer; UCB, Speakers bureau: Abbvie; Bristol-Myers Squibb; Celgene; Lilly; Gilead Sciences, Inc; MSD; Pfizer; Roche; UCB


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
M Maluf ◽  
M Malu. Perin ◽  
P O Malu. Perin ◽  
P Perin

Abstract Study question Are there any associations between ambient outdoor air pollution and the primary sex ratio (PSR)? Summary answer Short-term exposure to increased PM10, PM2.5 and NO2 levels were significantly associated with higher PSR. What is known already PSR estimates represent a backward extrapolation from data based on spontaneous or induced abortions, fetal deaths or live births and are usually male-biased. A recent study, analyzing 3- to 6-day-old embryos derived from assisted reproductive technology (ART) procedures, showed that the sex ratio at conception is unbiased (0.5). Epidemiologic studies of air pollution on secondary (birth) sex ratio showed that higher levels of particulate pollution were associated with increased rates of female birth. However, a direct association between urban levels of air pollutants and PSR has not been reported. Study design, size, duration A retrospective cohort study was carried out to assess the impact of long- or short-term exposure to six ambient outdoor air pollutants (particulate matter, PM10µm and PM2.5µm; SO2; CO; NO2; O3) on PSR (XY/XX) of couples undergoing their first IVF cycle for preimplantation genetic screening (N = 337). Data was from fixed air quality monitoring stations across the city between January 2014 and December 2018. Embryos with sex chromosome abnormalities were excluded from the analysis. Participants/materials, setting, methods Average concentrations of the pollutants for the 90 (long-term exposure) and 15 days (short-term exposure) predating oocyte retrieval represented the exposures of interest. Pollutant levels were categorized into quartiles (Q1 to Q4) and exposure risk was divided into two periods in which average concentrations and confidence intervals for the pollutants were in the upper quartile (Q4 period) or not (Q1-Q3 period). The strength association between exposure risk and PSR was performed through analysis of covariance. Main results and the role of chance The estimated means of PM10, PM2.5, SO2, NO2, O3 and CO for Q1-Q3/Q4 periods were 27.7/39.3, 16.7/23.7, 2.5/3.9, 37.0/46.4, 32.2/45.3 µg/m3 and 0.64/0.87 ppm and 26.3/43.0, 16.0/26.3, 2.4/4.2, 36.5/47.8, 31.7/50.4 µg/m3 and 0.62/0.90 ppm for long- and short-term exposures, respectively. PM10, PM2.5 and NO2 levels in the Q4 period had significantly higher PSR (138.1, 134.0 and 137.6) when compared to Q1-Q3 period (94.4, 98.1 and 96.4) for the short-term exposure (p = 0.0193; p = 0.0439; p = 0.0180, respectively). PM10, PM2.5, SO2, NO2 and CO levels in the Q4 and Q1-Q3 periods for the long-term exposure showed no significant effect on PSR. Contrastingly, O3 levels in the Q4 period had significantly lower PSR (82.6) when compared to Q1-Q3 (115.9) for the long-term exposure (p = 0.0202). A monotonic increase in PSR was observed with increased PM10 concentration in the Q4 period for the short-term exposure (F-ratio: 4.4476; p = 0.0352). Limitations, reasons for caution Some limitations of the study should be underlined, such as its retrospective nature, exposure assessment based on pollutant levels derived from a network average across city sites, and limited extrapolation of the results to the general population. Wider implications of the findings: Our data suggest that short-term exposure to environmental factors could affect the primary sex ratio in polluted seasons or cities. A monotonic effect on PSR in the case of exposure to increasing PM10 levels was identified. Trial registration number Not applicable


Sign in / Sign up

Export Citation Format

Share Document