scholarly journals Hydrogen Separation Performance of UiO-66-NH2 Membranes Grown via Liquid-Phase Epitaxy Layer-by-Layer Deposition and One-Pot Synthesis

Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 735
Author(s):  
Alessandro Micero ◽  
Tawheed Hashem ◽  
Hartmut Gliemann ◽  
Aline Léon

The quality assurance of hydrogen fuel for mobile applications is assessed by the guidelines and directives given in the European and international standards. However, the presence of impurities in the hydrogen fuel, in particular nitrogen, water, and oxygen, is experienced in several refueling stations. Within this work, metal-organic framework (MOF)-based membranes are investigated as a fine-purification stage of the hydrogen fuel. Three H2/N2 concentrations have been used to analyze the separation factor of UiO-66-NH2 membranes prepared using the layer-by-layer (LBL) and the one-pot (OP) synthesis methods. It is shown that the separation factor for an equimolar ratio is 14.4% higher for the LBL sample compared to the OP membrane, suggesting a higher orientation and continuity of the LBL surface-supported metal-organic framework (SURMOF). Using an equimolar ratio of H2/N2, it is shown that selective separation of hydrogen over nitrogen occurs with a separation factor of 3.02 and 2.64 for the SURMOF and MOF membrane, respectively. To the best of our knowledge, this is the highest reported performance for a single-phase UiO-66-NH2 membrane. For higher hydrogen concentrations, the separation factor decreases due to reduced interactions between pore walls and N2 molecules.

RSC Advances ◽  
2020 ◽  
Vol 10 (58) ◽  
pp. 35206-35213
Author(s):  
Abdelaziz M. Aboraia ◽  
Viktor V. Shapovalov ◽  
Alexnader A. Guda ◽  
Vera V. Butova ◽  
Alexander Soldatov

LiCoPO4 (LCP) is a promising high voltage cathode material but suffers from low conductivity and poor electrochemical properties.


2017 ◽  
Vol 5 (32) ◽  
pp. 16865-16872 ◽  
Author(s):  
Dongbo Yu ◽  
Liang Ge ◽  
Xinlai Wei ◽  
Bin Wu ◽  
Jin Ran ◽  
...  

A promising strategy is demonstrated for the syntheses of metal organic framework/graphene oxide hybrid films with highly ordered layer-by-layer architecture, and the derived hybrids exhibit remarkable energy storage performances.


2020 ◽  
Author(s):  
Barbara Souza ◽  
Jin-Chong Tan

We report two solvent-free mechanochemical methods to achieve one‑pot encapsulation of anti-cancer drug 5‑Fluorouracil (5‑FU) in the iron-based MIL‑100 metal-organic framework (MOF). We compare the structural and physicochemical properties of drug@MIL‑100 systems derived from <i>in situ </i>manual and vortex grinding, where the former exhibits a slower drug release due to stronger guest-host interactions.


Sign in / Sign up

Export Citation Format

Share Document