scholarly journals Antibacterial Properties of Polysulfone Membranes Blended with Arabic Gum

Membranes ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 29 ◽  
Author(s):  
Souhir Sabri ◽  
Ahmad Najjar ◽  
Yehia Manawi ◽  
Nahla Eltai ◽  
Asma Al-Thani ◽  
...  

Polysulfone (PS) membranes blended with different loadings of arabic gum (AG) were synthesized using phase inversion method and the antibacterial properties of the synthesized membranes were tested using a number Gram-negative (Escherichia coli, Klebsiella pneumonia and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacterial species. It was shown that AG addition to the dope polymer solutions essentially changed porous structure, hydrophilicity and zeta potential of the cast PS/AG membranes. These changes were due to the amphiphilic properties of AG macromolecules that contained negatively charged hydrophilic residues. A pronounced decrease in bacterial attachment was seen in the field emission scanning electron microscopy (FESEM) images for PS/AG membrane samples compared to both commercial (Microdyn-Nadir) and bare PS (without AG) membranes. AG loading dependent trend was observed where the prevention of bacterial colonization on the membrane surface was strongest at the highest (7 wt. %) AG loading in the casting solution. Possible mechanisms for the prevention of bacterial colonization were discussed. Significantly, the inhibition of bacterial attachment and growth on PS/AG membranes was observed for both Gram-positive and Gram-negative bacterial models, rendering these novel membranes with strong biofouling resistance attractive for water treatment applications.

2019 ◽  
Vol 9 (3) ◽  
pp. 513 ◽  
Author(s):  
Ahmad Najjar ◽  
Souhir Sabri ◽  
Rashad Al-Gaashani ◽  
Viktor Kochkodan ◽  
Muataz Atieh

Membrane biofouling has proved to be a major obstacle when it comes to membrane efficiency in membrane-based water treatment. Solutions to this problem remain elusive. This study presents novel polyethersulfone (PES) membranes that are fabricated using the phase inversion method at different loadings of graphene oxide (GO) and 1 wt. % arabic gum (AG) as nanofiller and pore forming agents. Synthesized GO was examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for morphological studies and energy-dispersive X-ray spectroscopy (EDX) for elemental analysis. The prepared GO flakes showed a high content of oxygen-containing groups (~31%). The fabricated membranes were extensively characterized, including water contact angle analysis for hydrophilicity, zeta potential measurements for surface charge, SEM, total porosity and pore size measurements. The prepared membranes underwent fouling tests using bovine serum albumin (BSA) solutions and biofouling tests using model Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacterial suspensions as well as real treated sewage effluent (TSE). The results showed that the novel PES/GO membranes possessed strong hydrophilicity and negative surface charge with an increase in porosity, pore size and water flux. The PES/GO membranes exhibited superior antibacterial action against both Gram-positive and Gram-negative bacterial species, implicating PES membranes which incorporate GO and AG as novel membranes that are capable of high antibiofouling properties with high flux.


1974 ◽  
Vol 19 (3) ◽  
pp. 119-124 ◽  
Author(s):  
T. A. McAllister ◽  
J. Givan ◽  
A. Black ◽  
M. J. Turner ◽  
M. M. Kerr ◽  
...  

Bacteriological examinations were performed on 1103 infants to determine the ages at which the newborn are colonized at different sites by bacteria, and with which organisms. On the day of birth, specimens for culture included aspirated gastric contents, and swabs from nose, throat, groin and rectum; on Day 3 the umbilical cord clamp with a section of the cord, swabs from nose, throat, groin and rectum; on days 5 and 1, and weekly thereafter, swabs from the same 4 sites. These examinations included identification of the individual bacterial species. The mass of information so obtained was analysed by computer. The high level of bacterial colonization by day 3 was striking and, indeed, large numbers of potential pathogens were grown from infants within one hour of birth. Staphylococcus aureus was found only in very small numbers of infants, e.g. only 2.6 per cent of infants' umbilical cords on day 3, and 4 per cent of infants' noses on day 7. If the levels of colonization reflect the risks of infection, Pseudomonas aeruginosa ranks close to Staph. aureus in the newborn nursery of the modern maternity hospital. Forty two different species of bacteria were isolated from these infants of which 24 were potential pathogens and of the latter, gram-negative organisms greatly outnumbered the gram-positive. This high incidence of gram-negative colonization in a large series of hospitalized neonates may be a normal phenomenon but it suggests that the risk of infection is today greater with gram-negative than with gram-positive bacteria. The figures for carriage of pathogenic staphylococci in the present investigation contrast markedly with the figures reported by many workers between 1950 and 1960.


Membranes ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 32 ◽  
Author(s):  
Ahmad Najjar ◽  
Souhir Sabri ◽  
Rashad Al-Gaashani ◽  
Muataz Ali Atieh ◽  
Viktor Kochkodan

Despite extensive research efforts focusing on tackling membrane biofouling, one of the biggest problems associated with membrane technology, there has been little headway in this area. This study presents novel polyethersulfone (PES) membranes synthesized via a phase inversion method at incremental loadings of functionalized oxidized multiwalled carbon nanotubes (OMWCNT) along with 1 wt. % arabic gum (AG). The synthesized OMWCNT were examined using scanning electron microscopy and transmission electron microscopy for morphological changes compared to the commercially obtained carbon nanotubes. Additionally energy-dispersive X-ray spectroscopy was carried out on the raw and OMWCNT materials, indicating an almost 2-fold increase in oxygen content in the latter sample. The cast PES/OMWCNT membranes were extensively characterized, and underwent a series of performance testing using bovine serum albumin solution for fouling tests and model Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacterial species for anti-biofouling experiments. Results indicated that the composite PES membranes, which incorporated the OMWCNT and AG, possessed significantly stronger hydrophilicity and negative surface charge as evidenced by water contact angle and zeta potential data, respectively, when compared to plain PES membranes. Furthermore atomic force microscopy analysis showed that the PES/OMWCNT membranes exhibited significantly lower surface roughness values. Together, these membrane surface features were held responsible for the anti-adhesive nature of the hybrid membranes seen during biofouling tests. Importantly, the prepared membranes were able to inhibit bacterial colonization upon incubation with both Gram-positive and Gram-negative bacterial suspensions. The PES/OMWCNT membranes also presented more resilient normalized flux values when compared to neat PES and commercial membrane samples during filtration of both bacterial suspensions and real treated sewage effluents. Taken together, the results of this study allude to OMWCNT and AG as promising additives, for incorporation into polymeric membranes to enhance biofouling resistance.


2021 ◽  
Vol 36 (2) ◽  
pp. 93-110
Author(s):  
Princy Philip ◽  
Tomlal Jose ◽  
Sarath KS ◽  
Sunny Kuriakose

Silver nanoparticles with 5–10 nm diameters are synthesised using Couroupita guianensis flower extract. The synthesised silver nanoparticles found to show good antimicrobial activity against gram negative and gram positive bacteria. Poly(methyl methacrylate) nanofibers with pristine, surface roughened and coaxial hollow forms are prepared by electrospinning. The structural and morphological properties of these pure and structurally modified poly(methyl methacrylate) nanofibers are evidenced by various analytical techniques. The antimicrobial studies of poly(methyl methacrylate) nanofibers having different architectures incorporated with silver nanoparticles are carried out. It is found that, all the three forms of poly(methyl methacrylate) nanofibers incorporated with silver nanoparticles show antibacterial properties against both gram positive and gram negative bacteria. Among these, surface roughened poly(methyl methacrylate) nanofibers incorporated with silver nanoparticles show highest antibacterial activity than the other two structural forms. The present study offers an alternative to the existing optical lenses. People especially those who suffer from eye problems can protect their eyes in a better way from infectious agents by wearing optical lens made from C. guianensis stabilised silver nanoparticles incorporated poly(methyl methacrylate) nanofibers than that made from pure poly(methyl methacrylate) nanofibers or films.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 349
Author(s):  
Sien Ombelet ◽  
Alessandra Natale ◽  
Jean-Baptiste Ronat ◽  
Olivier Vandenberg ◽  
Liselotte Hardy ◽  
...  

Bacterial identification is challenging in low-resource settings (LRS). We evaluated the MicroScan identification panels (Beckman Coulter, Brea, CA, USA) as part of Médecins Sans Frontières’ Mini-lab Project. The MicroScan Dried Overnight Positive ID Type 3 (PID3) panels for Gram-positive organisms and Dried Overnight Negative ID Type 2 (NID2) panels for Gram-negative organisms were assessed with 367 clinical isolates from LRS. Robustness was studied by inoculating Gram-negative species on the Gram-positive panel and vice versa. The ease of use of the panels and readability of the instructions for use (IFU) were evaluated. Of species represented in the MicroScan database, 94.6% (185/195) of Gram-negative and 85.9% (110/128) of Gram-positive isolates were correctly identified up to species level. Of species not represented in the database (e.g., Streptococcus suis and Bacillus spp.), 53.1% out of 49 isolates were incorrectly identified as non-related bacterial species. Testing of Gram-positive isolates on Gram-negative panels and vice versa (n = 144) resulted in incorrect identifications for 38.2% of tested isolates. The readability level of the IFU was considered too high for LRS. Inoculation of the panels was favorably evaluated, whereas the visual reading of the panels was considered error-prone. In conclusion, the accuracy of the MicroScan identification panels was excellent for Gram-negative species and good for Gram-positive species. Improvements in stability, robustness, and ease of use have been identified to assure adaptation to LRS constraints.


Micromachines ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 367 ◽  
Author(s):  
Yuguang Liu ◽  
Dirk Schulze-Makuch ◽  
Jean-Pierre de Vera ◽  
Charles Cockell ◽  
Thomas Leya ◽  
...  

Single-cell sequencing is a powerful technology that provides the capability of analyzing a single cell within a population. This technology is mostly coupled with microfluidic systems for controlled cell manipulation and precise fluid handling to shed light on the genomes of a wide range of cells. So far, single-cell sequencing has been focused mostly on human cells due to the ease of lysing the cells for genome amplification. The major challenges that bacterial species pose to genome amplification from single cells include the rigid bacterial cell walls and the need for an effective lysis protocol compatible with microfluidic platforms. In this work, we present a lysis protocol that can be used to extract genomic DNA from both gram-positive and gram-negative species without interfering with the amplification chemistry. Corynebacterium glutamicum was chosen as a typical gram-positive model and Nostoc sp. as a gram-negative model due to major challenges reported in previous studies. Our protocol is based on thermal and chemical lysis. We consider 80% of single-cell replicates that lead to >5 ng DNA after amplification as successful attempts. The protocol was directly applied to Gloeocapsa sp. and the single cells of the eukaryotic Sphaerocystis sp. and achieved a 100% success rate.


2020 ◽  
Vol 13 (10) ◽  
pp. 2243-2251
Author(s):  
Azhar G. Shalaby ◽  
Neveen R. Bakry ◽  
Abeer A. E. Mohamed ◽  
Ashraf A. Khalil

Background and Aim: Flinders Technology Associates (FTA) cards simplify sample storage, transport, and extraction by reducing cost and time for diagnosis. This study evaluated the FTA suitability for safe transport and storage of Gram-positive and Gram-negative bacterial cells of animal origin on its liquid culture form and from organ impression smears (tissues) under the same routine condition of microbiological laboratory along with detecting their nucleic acid over different storage conditions. Materials and Methods: Increase in bacterial count from 104 to 107 (colony-forming units/mL) of 78 isolates representing seven bacterial species was applied onto cards. FTA cards were grouped and inoculated by these bacteria and then stored at different conditions of 24-27°C, 4°C, and –20°C for 24 h, for 2 weeks, for 1 and 3 month storage, respectively. Bacteriological examination was done, after which bacterial DNA was identified using specific primers for each bacterial type and detected by polymerase chain reaction (PCR). Results: The total percentage of recovered bacteria from FTA cards was 66.7% at 24-27–C for 24 h, the detection limit was 100% in Gram-positive species, while it was 57.4% in Gram-negative ones. Regarding viable cell detection from organ impression smears, it was successful under the previous conditions. No live bacterial cells were observed by bacteriological isolation rather than only at 24-27°C for 24 h storage. All bacterial DNA were sufficiently confirmed by the PCR technique at different conditions. Conclusion: Overall, the FTA card method was observed to be a valid tool for nucleic acid purification for bacteria of animal origin in the form of culture or organ smears regardless of its Gram type and is used for a short time only 24 h for storage and transport of live bacteria specifically Gram-positive type. Moreover, the bacterial nucleic acid was intact after storage in –20°C for 3 months and was PCR amplifiable.


2005 ◽  
Vol 28 (7) ◽  
pp. 718-730 ◽  
Author(s):  
B. Del Curto ◽  
M.F. Brunella ◽  
C. Giordano ◽  
M.P. Pedeferri ◽  
V Valtulina ◽  
...  

Osteointegrative dental implants are widely used in implantology for their well-known excellent performance once implanted in the host. Remarkable bacterial colonization along the transgingival region may result in a progressive loss of adhesion at gum-implant interface and an increase of the bone area exposed to pathogens. This phenomenon may negatively effect the osteointegration process and cause, in the most severe cases, implant failure. The presence of bacteria at implant site affect the growth of new bone tissue and consequently, the achievement of a mechanically stable bone-implant interface, key parameters for a suitable implant osteointegration. In the present work, a novel surface treatment has been developed and optimized in order to convert the amorphous titanium oxide in a crystalline layer enriched in anatase capable of providing not only antibacterial properties but also of stimulating the precipitation of apatite when placed in simulated body fluid. The collected data have shown that the tested treatment results in a crystalline anatase-type titanium oxide layer able to provide a remarkable decrease in bacterial attachment without negatively effecting cell metabolic activity. In conclusion, the surface modification treatment analyzed in the present study might be an elegant way to reduce the risk of bacterial adhesion and increase the lifetime of the transgingival component in the osteointegrated dental implant.


Parasitology ◽  
2019 ◽  
Vol 147 (1) ◽  
pp. 29-38
Author(s):  
Rory Gough ◽  
Joel Barratt ◽  
Damien Stark ◽  
John Ellis

AbstractThe presence of bacterial DNA in Dientamoeba fragilis DNA extracts from culture poses a substantial challenge to sequencing the D. fragilis genome. However, elimination of bacteria from D. fragilis cultures has proven difficult in the past, presumably due to its dependence on some unknown prokaryote/s. This study explored options for removal of bacteria from D. fragilis cultures and for the generation of genome sequence data from D. fragilis. DNA was extracted from human faecal samples and xenic D. fragilis cultures. Extracts were subjected to 16S ribosomal DNA bacterial diversity profiling. Xenic D. fragilis cultures were then subject to antibiotic treatment regimens that systematically removed bacterial species depending on their membrane structure (Gram-positive or Gram-negative) and aerobic requirements. The impact of these treatments on cultures was assessed by 16S amplicon sequencing. Prior to antibiotic treatment, the cultures were dominated by Gram-negative bacteria. Addition of meropenem to cultures eliminated anaerobic Gram-negative bacteria, but it also led to protozoan death after 5 days incubation. The seeding of meropenem resistant Klebsiella pneumoniae strain KPC-2 into cultures before treatment by meropenem prevented death of D. fragilis cells beyond this 5 day period, suggesting that one or more species of Gram-negative bacteria may be an essential nutritional requirement for D. fragilis. Gram-positive cells were completely eliminated using vancomycin without affecting trophozoite growth. Finally, this study shows that genome sequencing of D. fragilis is feasible following bacterial elimination from cultures as the result of the major advances occurring in bioinformatics. We provide evidence on this fact by successfully sequencing the D. fragilis 28S large ribosomal DNA subunit gene using culture-derived DNA.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Khaled S. Al-Athel ◽  
Najat Marraiki ◽  
Abul Fazal M. Arif ◽  
Syed Sohail Akhtar ◽  
Javad Mostaghimi ◽  
...  

In this work, 316L stainless steel samples were coated with copper (Cu) and German silver (Cu 17%Ni 10%Zn) to investigate the relation between their mechanical and antibacterial behaviors. The mechanical and material characteristics of the samples were studied by looking into the microstructure of the surface and the cross-section of the coatings, the surface roughness, and the adhesion strength between the coating layer and the substrate. The antibacterial behavior is then studied against gram-negative Escherichia coli and gram-positive Staphylococcus aureus. Two experiments were conducted to examine the antibacterial behavior. In the first experiment, the coated samples were covered with distilled water, whereas in the second experiment, the samples were tested without being covered with distilled water. The results show that German silver (Cu 17%Ni 10%Zn) had a higher antibacterial rate than copper (Cu) by around 10% for both gram-negative E. coli and gram-positive S. aureus. The reason is because a smoother surface is expected to limit the bacterial adhesion in most cases, and the German silver samples have a lower surface roughness (Ra) due to the higher thermal expansion value of zinc (Zn) compared with copper (Cu). A more in-depth look into the effect of various thickness of the coating with alloying elements (in this case nickel and zinc) on the antibacterial rate would be of great interest.


Sign in / Sign up

Export Citation Format

Share Document