scholarly journals Failure Mechanisms of Mechanically and Thermally Produced Holes in High-Strength Low-Alloy Steel Plates Subjected to Fatigue Loading

Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 318 ◽  
Author(s):  
Carlos Jiménez-Peña ◽  
Constantinos Goulas ◽  
Johannes Preußner ◽  
Dimitri Debruyne

High-strength low-alloy steels (HSLA) are gaining popularity in structural applications in which weight reduction is of interest, such as heavy duty machinery, bridges, and offshore structures. Since the fatigue behavior of welds appears to be almost independent of the base material and displays little improvement when more resistant steel grades are employed, the use of bolted joints is an alternative joining technique which can lead to an increased fatigue performance of HSLA connections. Manufacturing a hole to allocate the fastener elements is an unavoidable step in bolted elements and it might induce defects and tensile residual stresses that could affect its fatigue behavior. This paper studies and compares several mechanical (punching, drilling, and waterjet-cut) and thermal (plasma and laser-cut) hole-making procedures in HSLA structural plates. A series of 63 uniaxial fatigue tests was completed, covering three HSLA grades produced by thermomechanically controlled process (TMCP) with yield strength ranging from 500 to 960 MPa. Samples were tested at single load level, which was considered representative in HSLA typical applications, according to the input received from end users. The manufactured holes were examined by means of optical and electron microscopy, 3D point measurement, micro hardness tests, X-ray diffraction, and electron backscatter diffraction (EBSD). The results give insight on cutting processes in HSLA and indicate how the fatigue failure is dominated by macro defects rather than by the steel grade. It was shown that the higher yield strength of the HSLA grades did not lead to a higher fatigue life. Best fatigue results were achieved with laser-cut specimens while punched samples withstood the lowest amount of cycles.

2018 ◽  
Vol 165 ◽  
pp. 21002 ◽  
Author(s):  
Antonio J. Abdalla ◽  
Douglas Santos ◽  
Getúlio Vasconcelos ◽  
Vladimir H. Baggio-Scheid ◽  
Deivid F. Silva

In this work 300M steel samples is used. This high-strength steel is used in aeronautic and aerospace industry and other structural applications. Initially the 300 M steel sample was submitted to a heat treatment to obtain a bainític structure. It was heated at 850 °C for 30 minutes and after that, cooled at 300 °C for 60 minutes. Afterwards two types of surface treatments have been employed: (a) using low-power laser CO2 (125 W) for introducing carbon into the surface and (b) plasma nitriding at a temperature of 500° C for 3 hours. After surface treatment, the metallographic preparation was carried out and the observations with optical and electronic microscopy have been made. The analysis of the coating showed an increase in the hardness of layer formed on the surface, mainly, among the nitriding layers. The mechanical properties were analyzed using tensile and fatigue tests. The results showed that the mechanical properties in tensile tests were strongly affected by the bainitic microstructure. The steel that received the nitriding surface by plasma treatment showed better fatigue behavior. The results are very promising because the layer formed on steel surface, in addition to improving the fatigue life, still improves protection against corrosion and wear.


Author(s):  
Siddhartha Kosti

This chapter deals with the modelling of nanomaterial and nanocomposite mechanical and thermal properties. Enrichment in the technology requires materials having higher thermal properties or higher structural properties. Nanomaterials and nanocomposites can serve this purpose accurately for aerospace or thermal applications and structural applications respectively. The thermal system requires materials having high thermal conductivity while structural system requires materials having high strength. Selection of the material for particular application is very critical and requires knowledge and experience. Al, Cu, TiO2, Al2O3, etc. are considered for thermal applications while epoxy-glass, FRP, etc. are considered for structural applications. Modelling of these nanomaterials and nanocomposites is done with the help of different mathematical models available in the literature. Results show that addition of the nanoparticle/composite in the base material can enhance the thermal and structural properties. Results also show that amount of weight percentage added also affects the properties.


Author(s):  
Siddhartha Kosti

This chapter deals with the modelling of nanomaterial and nanocomposite mechanical and thermal properties. Enrichment in the technology requires materials having higher thermal properties or higher structural properties. Nanomaterials and nanocomposites can serve this purpose accurately for aerospace or thermal applications and structural applications respectively. The thermal system requires materials having high thermal conductivity while structural system requires materials having high strength. Selection of the material for particular application is very critical and requires knowledge and experience. Al, Cu, TiO2, Al2O3, etc. are considered for thermal applications while epoxy-glass, FRP, etc. are considered for structural applications. Modelling of these nanomaterials and nanocomposites is done with the help of different mathematical models available in the literature. Results show that addition of the nanoparticle/composite in the base material can enhance the thermal and structural properties. Results also show that amount of weight percentage added also affects the properties.


2019 ◽  
Vol 300 ◽  
pp. 16004
Author(s):  
Luis Pallarés-Santasmartas ◽  
Joseba Albizuri ◽  
Nelson Leguinagoicoa ◽  
Nicolas Saintier ◽  
Jonathan Merzeau

The present study consists of a theoretical, experimental and fractographic investigation of the effect of superimposed static axial and shear stresses on the high cycle fatigue behavior of a 34CrNiMo6 high strength steel in quenched and tempered condition (UTS = 1210 MPa), commonly employed in highly stressed mechanical components. The Haigh diagrams for the axial and torsional cases under different values of mean stress were obtained. In both cases, experimental results showed that increasing the mean stress gradually reduces the stress amplitude that the material can withstand without failure. The results of the present tests are compared with the theoretical predictions from Findley, based on the maximum damage critical plane; and the methods of Marin and Froustey, which are energetic based criterions. Froustey’s method shows the best agreement with experimental results for torsional fatigue with mean shear stresses, showing a non-conservative behaviour for the axial fatigue loading case. Macro-analyses and micro-analyses of specimen fracture appearance were conducted in order to obtain the fracture characteristics for different mean shear stress values under torsion fatigue loading.


1998 ◽  
Vol 120 (1) ◽  
pp. 10-19 ◽  
Author(s):  
C. M. Sonsino ◽  
R. Umbach

In a joint project of a German working group supported by the ECSC and the Studiengesellschaft fu¨r Stahlanwendung e.V., the fatigue behavior of large-scale hybrid tubular joints with inserts manufactured from the high-strength cast steel GS-12 MnMo 7 4 welded into tubular members formed from the fine-grained steel StE 500 were compared to the behavior of large-scale welded tubular joints. The latter were made from medium-strength fine-grained steel StE 355 and high-strength StE 690. In addition, data from hybrid joints with cast steel inserts of medium-strength GS-8 Mn 7 welded into StE 355 tubulars is available for comparison. The tests were carried out under variable amplitude loading in artificial seawater. The results were evaluated for the failure criteria fatigue life to crack initiation (a = 1 mm) and through crack. With medium-strength (Rp0.2 > 355 N/mm2) hybrid tubulars, where by the use of cast steel inserts the welds were removed into areas of lower stress concentration, fatigue lives higher than a factor of 100 were achieved compared to the welded nodes, even those made from StE 690. However, by the use of high-strength (Rp0.2 > 500 N/mm2) cast steel inserts and tubular members of corresponding strength, the fatigue life to crack initiation was improved by a factor of two despite a thickness reduction compared to the medium-strength design. Post-weld treatments of the welded tubulars without cast steel inserts like shot-peening, TIG-dressing, or their combination resulted only in a slight increase of fatigue life. The results of this investigation do not only show how to improve the fatigue life by a new design using cast steel inserts, but indicate also how to revise design codes from the point of damage calculation (damage sum of 0.50 for welded nodes and 0.25 for cast steel inserts instead of the conventional value of 1.00), as well as consideration of fatigue life to initiation of a technically detectable crack with a defined depth e.g., a = 1 mm.


2007 ◽  
Vol 561-565 ◽  
pp. 259-262 ◽  
Author(s):  
X.J. Cao ◽  
M.R. Sriraman ◽  
Qing Yuan Wang

The importance of determining and understanding the very high cycle fatigue behaviors of materials has gained strength in recent years. Ti-alloys, in view of their high strength-to-weight ratio, have a range of structural applications. Of these, Ti-6Al-4V, belonging to the alpha-beta type is the most widely used. The present paper deals with investigations on the fatigue behavior of TC4, the Chinese equivalent to Ti-6Al-4V, up to very high cycles. Fatigue testing was carried out on a piezoelectric ultrasonic fatigue machine operating at 20 kHz frequency. Hourglass shaped resonant specimens were tested in ambient air at room temperature under completely reversed loading conditions (R = -1). Failure in the alloy was seen to occur right up to the gigacycle regime, with the fractures being found to initiate from the surface unlike in steels. The fracture surfaces exhibit brittle characteristics containing river patterns and cleavage facets, as well as striations.


Author(s):  
Takahiro Kamo ◽  
Takeshi Urabe ◽  
Kazushi Ohnishi ◽  
Hirofumi Nakamura ◽  
Shuji Okaguchi ◽  
...  

Offshore structure steel with high strength of YS550MPa has been investigated. As for offshore structure steel, high toughness in welded joints is required in addition to that in base metal. TMCP type steel of up to YS420MPa grade is used widely, and up to YS500MPa grade is reported in some papers. However, steel of higher strength grade with good toughness and weldability will be beneficial to structures in strict conditions. To reach the YS550MPa requirement, hardening effect by Cu precipitation was utilized. Steel plates were designed with micro-alloyed low C-Mn-Cu-Ni-Cr-Mo system. The combination of the copper precipitation and TMCP technology can increase strength without deteriorating toughness and weldability. Heat treatment for Cu precipitation was carried out to optimize the balance of strength and toughness of the base metal. The developed steel also shows good HAZ CTOD toughness up to 76.2mm thickness in several welding conditions including after PWHT. The newly developed steel has the possibility to increase the flexibility to design large-sized structures.


Author(s):  
Thorben Bender ◽  
Andreas Klenk ◽  
Stefan Weihe

Abstract For the assessment of welds under high-temperature conditions in the creep or creep-fatigue regimes, the knowledge on the damage location and its temporal evolution are of high importance. The failure behavior of similar welds of ferritic-martensitic steels in the creep regime is well known. For creep-fatigue loading, the behavior of welds is still subject to research but it seems that the heat affected zone (HAZ) limits the lifetime of welded components as well. This local failure behavior is not reflected in design guidelines using weld reduction factors or in typical assessment approaches. The evaluation of local strains and stresses in the HAZ is unavoidable. For the improvement of design and inspection guidelines, a more detailed consideration of weld behavior is of interest. In this paper, an overview of current developments in the assessment of welds under creep, fatigue, and creep-fatigue loading conditions is given. An assessment approach for creep damage and failure, including the prediction of rupture time and location, is presented. The assessment is based on numerical analyses considering the different behavior of base material and HAZ represented by three different subzones. The approach is validated with the simulation of a uniaxial cross weld, creep crack, and component tests. Whereas the creep behavior of the HAZ compared to base metal is quite well known, there is only little knowledge of their fatigue behavior. Using a set of fatigue tests on HAZ, base metal specimens and cross weld specimens, the influence of fatigue and creep-fatigue loading on the lifetime and failure location of a weld will be discussed. For the numerical simulations, a viscoplastic material law of Chaboche type is used and an evaluation of the local strains in the HAZ allows an attempt to explain the observed failure locations.


2017 ◽  
Vol 21 (6) ◽  
pp. 85-95 ◽  
Author(s):  
N. N. Sergeev ◽  
A. N. Sergeev ◽  
S. N. Kutepov ◽  
A. E. Gvozdev ◽  
E. V. Ageev

High-strength low-alloy steels are widely used in the construction of welded metal structures. The main advantage of these steels is good combination of strength and toughness, and weldability. However, when welding high strength low alloy steels during cooling of the weld to a temperature below 150-100 °C there may be a risk of formation of bulk crystal structures defects in the weld zone - cold cracks. It was experimentally established that one of the factors contributing to the formation of cold cracks may be the occlusion of hydrogen in the atmosphere of arc plasma in the solidifying weld metal, from which diffusion hydrogen may diffuse to different areas of the weld after cooling. Hydrogen cracking typically has a tendency to slow down i.e. cracks can occur several days after the completion of welding process. As a rule, hydrogen induced cracking occurs either in the original steel in the heat-affected zone or in the weld metal, which is important, topical and long been researched by various scientific schools. Modern technologies of high strength low alloy steels processing have significantly improved the quality of the base material by reducing the amount of carbon and impurities, which has increased the stability of weld in the heat affected zone (HAZ) to hydrogen induced cold cracking. The paper presents modern approaches to the definition of diffusion coefficient of hydrogen in welded joints of high-strength low-alloy steels. Taking into account the temperature, the gradient of chemical potential and continuity conditions there has been considered the process of mass transfer of hydrogen under the influence of diffuse inhomogeneous mediums. It has been shown that the local effects of changing pressure and chemical potential are described using the equation of generalized potential of the diffusing substance. Our paper presents analytical expressions to determine the apparent diffusion coefficient of hydrogen in different local areas of a welded joint depending on temperature.


Author(s):  
K. Poorhaydari ◽  
B. M. Patchett ◽  
D. G. Ivey

Microalloyed pipeline and structural steels are currently graded according to their yield strength. In this work, different microstructural factors that affect the yield strength of the steels are assessed and their contributions to the strength are estimated for several low-carbon microalloyed steels, used in pipeline or structural applications. Emphasis is placed on the relative contribution of grain/sub-grain size, precipitate distribution and dislocation density. Accurate grain/sub-grain size measurements were only possible through electron microscopy imaging. It was found that the increased strength is mainly due to the formation of bainitic structures with fine grain/sub-grain sizes. The contribution from other strengthening sources such as precipitates, dislocations and atoms in solid solution is limited and does not vary much among the several grades examined here. The variation in hardness among the fine-grained heat-affected zone samples (heat input range 0.5–2.5 kJ/mm) of one of the steels was also explained based on the microstructural changes.


Sign in / Sign up

Export Citation Format

Share Document