scholarly journals Enhancing the High-Temperature Strength of a Co-Base Superalloy by Optimizing the γ/γ′ Microstructure

Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 321
Author(s):  
D. Hausmann ◽  
C. Solís ◽  
L.P. Freund ◽  
N. Volz ◽  
A. Heinemann ◽  
...  

Compositionally complex polycrystalline γ/γ′ CoNi-base superalloys, such as CoWAlloy2 (Co41-Ni32-Cr12-Al9-W5-Ti0.3-Ta0.2-Si0.4-Hf0.1-C-B-Zr) are interesting candidates for new high-temperature materials. To maximize their high-temperature strength, the γ/γ′ microstructure has to be optimized by adjusting the multi-step heat treatments. Various microstructures after different heat treatments were analyzed by scanning and transmission electron microscopy and especially in-situ small-angle neutron scattering during heat treatment experiments. The corresponding mechanical properties were determined by compression tests and hardness measurements. From this, an optimum γ′ precipitate size was determined that is adjusted mainly in the first precipitation heat treatment step. This is discussed on the basis of the theory of shearing of γ′ precipitates by weak and strong pair-couplings of dislocations. A second age hardening step leads to a further increase in the γ′ volume fraction above 70% and the formation of tertiary γ′ precipitates in the γ channels, resulting in an increased hardness and yield strength. A comparison between two different three-step heat treatments revealed an increase in strength of 75 MPa for the optimized heat treatment.

2011 ◽  
Vol 1295 ◽  
Author(s):  
Helmut Clemens ◽  
Thomas Schmoelzer ◽  
Martin Schloffer ◽  
Emanuel Schwaighofer ◽  
Svea Mayer ◽  
...  

ABSTRACTIn this paper, the physical metallurgy and properties of a novel family of high-strength γ-TiAl-based alloys is reviewed succinctly. These so-called TNM™ alloys contain Nb and Mo additions in the range of 3 - 7 atomic percent as well as small additions of B and C. For the definition of the alloy composition thermodynamic calculations using the CALPHAD method were conducted. The predicted phase transformation and ordering temperatures were verified by differential scanning calorimetry and in situ high-energy X-ray diffraction. TNM alloys solidify via the β-phase and exhibit an adjustable β-phase volume fraction at temperatures, where hot-working processes are performed. Due to the high volume fraction of β-phase these alloys can be processed isothermally as well as under near conventional conditions. In order to study the occurring deformation and recrystallization processes during hot-working, in situ diffraction experiments were conducted during compression tests at elevated temperatures. With subsequent heat-treatments a significant reduction of the β-phase is achieved. These outstanding features of TNM alloys distinguish them from other TiAl alloys which must exclusively be processed under isothermal conditions and/or which always exhibit a high fraction of β-phase at service temperature. After hot-working and multi-step heat-treatments, these alloys show yield strength levels > 800 MPa at room temperature and also good creep resistance at elevated temperatures.


Author(s):  
A. Garg ◽  
R. D. Noebe ◽  
R. Darolia

Small additions of Hf to NiAl produce a significant increase in the high-temperature strength of single crystals. Hf has a very limited solubility in NiAl and in the presence of Si, results in a high density of G-phase (Ni16Hf6Si7) cuboidal precipitates and some G-platelets in a NiAl matrix. These precipitates have a F.C.C structure and nucleate on {100}NiAl planes with almost perfect coherency and a cube-on-cube orientation-relationship (O.R.). However, G-phase is metastable and after prolonged aging at high temperature dissolves at the expense of a more stable Heusler (β'-Ni2AlHf) phase. In addition to these two phases, a third phase was shown to be present in a NiAl-0.3at. % Hf alloy, but was not previously identified (Fig. 4 of ref. 2 ). In this work, we report the morphology, crystal-structure, O.R., and stability of this unknown phase, which were determined using conventional and analytical transmission electron microscopy (TEM).Single crystals of NiAl containing 0.5at. % Hf were grown by a Bridgman technique. Chemical analysis indicated that these crystals also contained Si, which was not an intentional alloying addition but was picked up from the shell mold during directional solidification.


Alloy Digest ◽  
1958 ◽  
Vol 7 (7) ◽  

Abstract ALUMINUM 6151, formerly A51S Alloy, is an aluminum forging alloy combining good forgeability, strength, and resistance to corrosion. It responds to an age-hardening heat treatment. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: Al-67. Producer or source: Aluminum Company of America.


Alloy Digest ◽  
1969 ◽  
Vol 18 (6) ◽  

Abstract Ti-5A1-4FeCr is an alpha-beta type titanium alloy recommended for airframe components. It responds to an age-hardening heat treatment. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ti-58. Producer or source: Titanium alloy mills.


2006 ◽  
Vol 510-511 ◽  
pp. 358-361
Author(s):  
Won Yong Kim ◽  
Han Sol Kim ◽  
In Dong Yeo ◽  
Mok Soon Kim

We report on advanced Ni3Al based high temperature structural alloys with refractory alloying elements such as Zr and Mo to be apllied in the fields of die-casting and high temperature press forming as die materials. The duplex microstructure consisting of L12 structured Ni3Al phase and Ni5Zr intermetallic dispersoids was observed to display the microstructural feature for the present alloys investigated. Depending on alloying elements, the volume fraction of 2nd phase was measured to be different, indicating a difference in solid solubility of alloying elements in the matrix γ’ phase. Lattice parameter of matrix phase increased with increasing content of alloying elements. In the higher temperature region more than 973K, the present alloys appeared to show their higher strength compared to those obtained in conventional superalloys. On the basis of experimental results obtained, it is suggested that refractory alloying elements have an effective role to improve the high temperature strength in terms of enhanced thermal stability and solid solution hardening.


1998 ◽  
Vol 4 (3) ◽  
pp. 269-277 ◽  
Author(s):  
A. Agrawal ◽  
J. Cizeron ◽  
V.L. Colvin

In this work, the high-temperature behavior of nanocrystalline TiO2 is studied using in situ transmission electron microscopy (TEM). These nanoparticles are made using wet chemical techniques that generate the anatase phase of TiO2 with average grain sizes of 6 nm. X-ray diffraction studies of nanophase TiO2 indicate the material undergoes a solid-solid phase transformation to the stable rutile phase between 600° and 900°C. This phase transition is not observed in the TEM samples, which remain anatase up to temperatures as high as 1000°C. Above 1000°C, nanoparticles become mobile on the amorphous carbon grid and by 1300°C, all anatase diffraction is lost and larger (50 nm) single crystals of a new phase are present. This new phase is identified as TiC both from high-resolution electron microscopy after heat treatment and electron diffraction collected during in situ heating experiments. Video images of the particle motion in situ show the nanoparticles diffusing and interacting with the underlying grid material as the reaction from TiO2 to TiC proceeds.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4317
Author(s):  
Thywill Cephas Dzogbewu ◽  
Willie Bouwer du Preez

TiAl-based intermetallic alloys have come to the fore as the preferred alloys for high-temperature applications. Conventional methods (casting, forging, sheet forming, extrusion, etc.) have been applied to produce TiAl intermetallic alloys. However, the inherent limitations of conventional methods do not permit the production of the TiAl alloys with intricate geometries. Additive manufacturing technologies such as electron beam melting (EBM) and laser powder bed fusion (LPBF), were used to produce TiAl alloys with complex geometries. EBM technology can produce crack-free TiAl components but lacks geometrical accuracy. LPBF technology has great geometrical precision that could be used to produce TiAl alloys with tailored complex geometries, but cannot produce crack-free TiAl components. To satisfy the current industrial requirement of producing crack-free TiAl alloys with tailored geometries, the paper proposes a new heating model for the LPBF manufacturing process. The model could maintain even temperature between the solidified and subsequent layers, reducing temperature gradients (residual stress), which could eliminate crack formation. The new conceptualized model also opens a window for in situ heat treatment of the built samples to obtain the desired TiAl (γ-phase) and Ti3Al (α2-phase) intermetallic phases for high-temperature operations. In situ heat treatment would also improve the homogeneity of the microstructure of LPBF manufactured samples.


1990 ◽  
Vol 183 ◽  
Author(s):  
J. L. Batstone

AbstractMotion of ordered twin/matrix interfaces in films of silicon on sapphire occurs during high temperature annealing. This process is shown to be thermally activated and is analogous to grain boundary motion. Motion of amorphous/crystalline interfaces occurs during recrystallization of CoSi2 and NiSi2 from the amorphous phase. In-situ transmission electron microscopy has revealed details of the growth kinetics and interfacial roughness.


Sign in / Sign up

Export Citation Format

Share Document