scholarly journals A Bibliometric Analysis of the Publications on In Doped ZnO to be a Guide for Future Studies

Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 598 ◽  
Author(s):  
Mehmet Yilmaz ◽  
Maria Luisa Grilli ◽  
Guven Turgut

This study aims to examine the studies regarding In doped ZnO published in the Web of Science database. A total of 777 articles were reached (31 March 2020). The articles were downloaded for the bibliometric analysis and collected in a file. The file was uploaded to VOSViewer programme in order to reveal the most used keywords, words in the abstracts, citation analyses, co-citation and co-authorship and countries analyses of the articles. The results showed that the most used keywords were “ZnO”, “photoluminescence”, “optical properties”, “thin films” and “doping”. These results indicate that the articles mostly focus on some characteristics of In doped ZnO thin films such as structural, optical and electrical features. When the distribution of the number of articles using the keywords by year was searched, it was found that recent articles focus mainly on synthesis of In doped ZnO film via chemical routes such as sol-gel and hydrothermal syntheses, and on ZnO-based device applications such as solar cells and gas sensors. The most used keywords were also found to be films, X-ray, glass substrate, X-ray Diffraction (XRD), spectra and layer. These results indicate that the studies mostly focus on In doped ZnO thin films as transparent conductive oxide (TCO) material used in device applications like solar cells. In this context, it was found that structural, topographical, optical, electrical and magnetic properties of In doped ZnO films were characterized in terms of defected structure or defect type, substrate temperature, film thickness and In doping content. When the distribution of these words is shown on a year-by-year basis, it is evident that more recent articles tend to focus both on efficiency and performance of In doped ZnO films as TCO in solar cells, diodes and photoluminescence applications both on nanostructures, such as nanoparticles, and nanorods for gas sensor applications. The results also indicated that Maldonado and Asomoza were the most cited authors in this field. In addition, Major, Minami and Ozgur were the most cited (co-citation) authors in this field. The most cited journals were found to be Thin Solid Films, Journal of Materials Science Materials in Electronics and Journal of Applied Physics and, more recently, Energy, Ceramics International, Applied Physics-A, Optik, Material Research Express, ACS Applied Materials and Interfaces and Optical Materials. The most co-cited journals were Applied Physics Letters, Thin Solid Films, Journal of Applied Physics, Physical Review B, and Applied Surface Science. Lastly, the countries with the highest number of documents were China, India, South Korea, USA and Japan. Consequently, it is suggested that future research needs to focus more on synthesis and characterization with different growth techniques which make In doped ZnO suitable for device applications, such as solar cells and diodes. In this context, this study may provide valuable information to researchers for future studies on the topic.

2018 ◽  
Vol 10 (1) ◽  
pp. 26 ◽  
Author(s):  
Huseyn Mamedov ◽  
Syed Ismat Shah ◽  
Archil Chirakadze ◽  
Vusal Mammadov ◽  
Vusala Mammadova ◽  
...  

Heterojunctions of p-Si/Cd1-xZnxO were synthesized by depositing of Cd1-xZnxO films on p-Si substrates by electrochemical deposition. The morphological properties of the films were studied by scanning microscopy. The electric and photoelectrical properties of heterojunctions were investigated depending on the deposition potential and films composition. Heterojunctions of p-Si/Cd1-xZnxO, which deposited at cathode potential of -1.2 V, shows good rectification (k=1640). Under AM1.5 conditions the maximal values of open-circuit voltage, short-circuit current, fill factor and efficiency of our best nano-structured cell, were Uoc = 442 mV, Jsc = 19.9 mA/cm2, FF = 0.59 and n = 5.1 %, respectively. Full Text: PDF ReferencesX. Li, et al. "Role of donor defects in enhancing ferromagnetism of Cu-doped ZnO films", J. Appl. Phys., 105, 103914 (2009). CrossRef X. Han, K. Han and M. Tao, "Electrodeposition of Group-IIIA Doped ZnO as a Transparent Conductive Oxide", ECS Trans., 25, 93 (2010). CrossRef W. Liu et al. "Na-Doped p-Type ZnO Microwires", J. Am. Chem. Soc., 132, 2498 (2010). CrossRef R.A. Ismail and O.A. Abdulrazaq, "A new route for fabricating CdO/c-Si heterojunction solar cells", Sol. Energy Mater. Sol. Cells, 91, 903 (2007). CrossRef R.S. Mane, H.M. Pathan, C.D. Lokhande and S.H.Han, "An effective use of nanocrystalline CdO thin films in dye-sensitized solar cells", Sol. Energy, 80 185 (2006). CrossRef E. Martin et al. "Properties of multilayer transparent conducting oxide films", Thin Solid Films, 461, 309 (2004). CrossRef Y. Caglar, M. Caglar, S. Ilican and A. Ates, "Morphological, optical and electrical properties of CdZnO films prepared by sol?gel method", J. Phys. D: Appl. Phys., 42, 065421 (2009). CrossRef F. Wang, Z. Ye, D. Ma, L. Zhu and F. Zhuge, "Formation of quasi-aligned ZnCdO nanorods and nanoneedles", J. Cryst. Growth, 283, 373 (2005). CrossRef A. Abdinov, H. Mamedov, S. Amirova, "Investigation of Electrodeposited Glass/SnO2/CuInSe2/Cd1-xZnxS1-ySey/ZnO Thin Solar Cells", Jpn. J. Appl. Phys., 46, 7359 (2007). CrossRef A. Abdinov, H. Mamedov, H. Hasanov, and S. Amirova, "Photosensitivity of p,n-Si/n-Cd1?xZnxS heterojunctions manufactured by a method of electrochemical deposition", Thin Solid Films, 480-481, 388 (2005). CrossRef A. Abdinov, H. Mamedov, and S. Amirova, "Investigation of electrodeposited p-Si/Cd1 ? xZnxS1 ? ySey heterojunction solar cells", Thin Solid Films, 511-512, 140 (2006) CrossRef H. Mamedov, V. Mamedov, V. Mamedova, Kh. Ahmadova, "Investigation of p-GaAs/n-Cd1-xZnxS1-yTey/Cd1-xZnxO heterojunctions deposited by electrochemical deposition", J. Optoelectrom. Adv. M., 17, 67 (2015). DirectLink H. Mamedov et al. "Preparation and Investigation of p-GaAs/n-Cd1-xZnxS1-yTey Heterojunctions Deposited by Electrochemical Deposition", J. Solar Energy Engineering, 136, 044503 (2014). CrossRef S. Sadofev, S. Blumstengel, J. Cui, J. Puls, S. Rogaschewski, P. Schafer and F. Henneberger, "Visible band-gap ZnCdO heterostructures grown by molecular beam epitaxy", Appl. Phys. Lett., 89, 201907 (2006). CrossRef G. Torres-Delgado et al. "Percolation Mechanism and Characterization of (CdO)y(ZnO)1?y Thin Films", Adv. Funct. Mater., 12, 129 (2002). CrossRef H. Tabet-Derraz, N. Benramdane, D. Nacer, A. Bouzidi and M. Medles, "Investigations on ZnxCd1?xO thin films obtained by spray pyrolysis", Sol. Energy Mater. Sol. Cells, 73, 249 (2002). CrossRef M. Tortosa, M. Mollar and B. Mar?, "Synthesis of ZnCdO thin films by electrodeposition", J. Cryst. Growth, 304, 97 (2007). CrossRef A. Singh, D. Kumar, P. K. Khanna, M. Kumar, and B. Prasad, "Phase Segregation Limit in ZnCdO Thin Films Deposited by Sol?Gel Method: A Study of Structural, Optical and Electrical Properties", ECS Journal of Solid State Science and Technology, 2 (9), Q136 (2013). CrossRef F.Z. Bedia, A. Bedia, B. Benyoucef and S.Hamzaoui, "Electrical Characterization of n-ZnO/p-Si Heterojunction Prepared by Spray Pyrolysis Technique", Physics Procedia, 55, 61 (2014). CrossRef M. Jing-Jing et al. "Rectifying and Photovoltage Properties of ZnO:A1/p-Si Heterojunction", Chin. Phys. Lett., 27 (10), 107304 (2010). CrossRef


2012 ◽  
Vol 326-328 ◽  
pp. 583-586
Author(s):  
R. Gheriani ◽  
Raouf Mechiakh

The mainly property of thin solid films technologies is their adhesion to the substrates. Because of its good wear resistance and its low coefficient of friction against steel, TiC is an attractive coating material for wear applications such as bearing components. The adhesion of TiC coatings, however suffers from insufficient reproducibility, which is probably due to uncontrolled process parameters. In our work pure titanium thin films of approximately 0.6 µm in thickness were prepared on 100C6 stainless steel substrates by cathodic sputtering. The samples were subjected to secondary vacuum annealing at a temperature between 400 and 1000°C for 30 min. The reaction between substrates and thin films was characterized using an x-ray diffractometer (XRD). Surface morphology and elements diffusion evaluations were carried out by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). The interaction substrates-thin films is accompanied by nucleation and growth of titanium carbide as a function of annealing temperature. By the SEM and EDS results, it appears clearly that the diffusion of manganese to the external layers leads to the destruction of adhesion especially at high temperatures.


2019 ◽  
Vol 17 (12) ◽  
pp. 987-990
Author(s):  
K. Rathi Devi ◽  
G. Selvan ◽  
M. Karunakaran ◽  
G. Rajesh Kanna ◽  
K. Kasirajan

In this work, Mn doped Zinc Oxide (ZnO) thin films were coated onto glass substrates by low cost SILAR technique by altering dipping cycle such as 40, 60, 80 and 100. The film thickness was estimated using weight gain method and it revealed that the film thickness increased with dipping cycle. The structural, morphological, elemental and FTIR properties of the coated Mn doped ZnO films were studied using X-ray diffraction (XRD), scanning electron microscope (SEM), EDAX and FTIR spectrophotometer respectively. The prepared films were found to be hexagonal structure with polycrystalline in nature with preferential orientation along (002) plane. X-ray line profile analysis was used to evaluate the micro structural parameters. The crystallite size values are increased with increase of dipping cycle. Morphological results showed that the dipping cycle has a marked effect on morphology of the prepared Mn doped ZnO thin films. EDAX studies showed that the presence of Zinc, Oxygen and Mn content.


2017 ◽  
Vol 05 (01) ◽  
pp. 1750004
Author(s):  
R. Vettumperumal ◽  
S. Kalyanaraman ◽  
R. Thangavel

Nanocrystalline ruthenium (Ru)-doped ZnO thin films on sapphire substrate was prepared using sol–gel method by spin coating technique. The structural and I-V characteristics of Ru doped ZnO thin films were studied from the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) analysis and Raman spectroscopy. X-ray diffraction (XRD) results revealed that the deposited films belonged to hexagonal wurtzite structure with c-axis orientation. It is also confirmed from the Raman spectra. Enhancement of longitudinal optical (LO) phonon is observed by the strong electron–phonon interaction. An observed increment in sheet resistance with increase in dopant percentage of Ru (1–2[Formula: see text]mol%) in ZnO films was found and better I-V characteristic behavior was observed at 1[Formula: see text]mol% of Ru-doped ZnO thin films. Trap limited current flow inside the material was calculated from the log I versus log V plot in the higher voltage region.


2021 ◽  
Vol 317 ◽  
pp. 471-476
Author(s):  
Nur Amaliyana Raship ◽  
Siti Nooraya Mohd Tawil ◽  
Nafarizal Nayan ◽  
Khadijah Ismail ◽  
Muliana Tahan ◽  
...  

The effect of various target to substrate distance on the physical properties of sputtered Gd-doped ZnO thin films were investigated. The thin films with three distances between a target to substrate ranged from 12.0, 13.5 and 15.0 cm were deposited by a dual-target sputtering method. All the thin film properties were characterized using x-ray diffraction, atomic force microscope, energy dispersive x-ray analysis and ultra-violet visible spectrophotometer. The sharp and intense peak of (002) was observed for a sample with the target to substrate distance of 13.5 cm which indicated good crystallinity as compared to other samples. Gd incorporations of 3 at% in ZnO films were further confirmed via the energy dispersive x-ray analysis. AFM images revealed that the surface topology Gd-doped ZnO thin film have a smooth and uniform surface. The transmittance was above 90 % and slightly decrease with the increase of target to substrate distance. The bandgap value was static at 3.14 eV for all the 12.0, 13.5 and 15.0 cm of various target to substrate distances.


2021 ◽  
Vol 20 (1) ◽  
pp. 84-93
Author(s):  
Dumitru Rusnac ◽  
◽  
Ion Lungu ◽  
Lidia Ghimpu ◽  
Gleb Colibaba ◽  
...  

Doped (with GaCl 3 ), undoped ZnO and ITO/ZnO:Ga nanostructured thin films are synthesized using the spray pyrolysis method. The doped ZnO thin films are synthesized at the atomic ratio of Ga/Zn added in the starting solution fixed at 1, 2, 3, and 5. Gallium-doped ZnO films synthesized on glass/ITO substrates are annealed at 450C in different environments: vacuum, oxygen, and hydrogen. X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and current–voltage (I–V) measurements are applied to characterize the structural properties, composition, surface morphology, and electrical properties of ZnO:Ga nanostructured thin films. X-ray diffraction analysis shows that ZnO:Ga films deposited on glass substrates have a dense and homogeneous surface with a hexagonal structure. The ZnO:Ga films deposited on glass/ITO substrates are composed of two phases, namely, hexagonal ZnO and cubic ITO. The I–V characteristics show the presence of good ohmic contacts between Al and In metals and ZnO:Ga thin films regardless of the nature of the substrate and the annealing atmosphere.


2010 ◽  
Vol 24 (28) ◽  
pp. 2785-2791
Author(s):  
J. ELANCHEZHIYAN ◽  
D. W. LEE ◽  
W. J. LEE ◽  
B. C. SHIN

p-type conduction in ZnO thin films has been realized by doping with GaN . Undoped and GaN -doped ZnO thin films were prepared by the pulsed laser deposition technique. All the grown films have been characterized by X-ray diffraction (XRD), atomic force microscopy (AFM) and Hall effect measurements in order to study their structural, morphological and electrical properties, respectively. The presence of dopants in the films has been confirmed by energy dispersive X-ray spectroscopy (EDS). XRD results reveal that the wurtzite structure deviates for the films with higher concentrations of GaN . Hall measurements show that the 5 and 10 at.% GaN -doped ZnO films have p-type conduction.


Sign in / Sign up

Export Citation Format

Share Document