scholarly journals Advances in Thermochemical Synthesis and Characterization of the Prepared Copper/Alumina Nanocomposites

Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 719
Author(s):  
Marija Korać ◽  
Željko Kamberović ◽  
Zoran Anđić ◽  
Srećko Stopić

This paper presents thermochemical synthesis of copper/alumina nanocomposites in a Cu-Al2O3 system with 1–2.5 wt.% of alumina and their characterization, which included: transmission electron microscopy: focused ion beam (FIB), analytical electron microscopy (AEM) and high resolution transmission electron microscopy (HRTEM). Thermodynamic analysis was used to study the formation mechanism of desirable products during drying, thermal decomposition and reduction processes. Upon synthesis of powders, samples were cold pressed (2 GPa) in tools dimension 8 × 32 × 2 mm and sintered at temperatures within the range 800–1000 °C for 15 to 120 min in a hydrogen atmosphere. Results of characterization showed that dispersion-strengthened compacts could be produced by sintering of thermo-chemically prepared Cu-Al2O3 powders with properties suitable for material application, such as a contact material exhibiting high strength and high electrical conductivity at the same time. Additional research was carried out in order to analyze the application of the obtained nanocomposite powders for the synthesis of copper/alumina nanocomposites by a new method, which is a combination of a thermochemical procedure and mechanical alloying. The measured values of an electric conductivity and hardness were compared with ones in literature, confirming an advantage of the proposed combined strategy.

2011 ◽  
Vol 17 (2) ◽  
pp. 220-225 ◽  
Author(s):  
Martin Saunders ◽  
Charlie Kong ◽  
Jeremy A. Shaw ◽  
Peta L. Clode

AbstractThe teeth of the marine mollusk Acanthopleura hirtosa are an excellent example of a complex, organic, matrix-mediated biomineral, with the fully mineralized teeth comprising layers of iron oxide and iron oxyhydroxide minerals around a calcium apatite core. To investigate the relationship between the various mineral layers and the organic matrix fibers on which they grew, sections have been prepared from specific features in the teeth at controlled orientations using focused ion beam processing. Compositional and microstructural details of heterophase interfaces, and the fate of the organic matrix fibers within the mineral layers, can then be analyzed by a range of transmission electron microscopy (TEM) techniques. Energy-filtered TEM highlights the interlocking nature of the various mineral phases, while high-angle annular dark-field scanning TEM imaging demonstrates that the organic matrix continues to exist in the fully mineralized teeth. These new insights into the structure of this complex biomaterial are an important step in understanding the relationship between its structural and physical properties and may help explain its high strength and crack-resistance behavior.


Author(s):  
Ching Shan Sung ◽  
Hsiu Ting Lee ◽  
Jian Shing Luo

Abstract Transmission electron microscopy (TEM) plays an important role in the structural analysis and characterization of materials for process evaluation and failure analysis in the integrated circuit (IC) industry as device shrinkage continues. It is well known that a high quality TEM sample is one of the keys which enables to facilitate successful TEM analysis. This paper demonstrates a few examples to show the tricks on positioning, protection deposition, sample dicing, and focused ion beam milling of the TEM sample preparation for advanced DRAMs. The micro-structures of the devices and samples architectures were observed by using cross sectional transmission electron microscopy, scanning electron microscopy, and optical microscopy. Following these tricks can help readers to prepare TEM samples with higher quality and efficiency.


Author(s):  
K. Doong ◽  
J.-M. Fu ◽  
Y.-C. Huang

Abstract The specimen preparation technique using focused ion beam (FIB) to generate cross-sectional transmission electron microscopy (XTEM) samples of chemical vapor deposition (CVD) of Tungsten-plug (W-plug) and Tungsten Silicides (WSix) was studied. Using the combination method including two axes tilting[l], gas enhanced focused ion beam milling[2] and sacrificial metal coating on both sides of electron transmission membrane[3], it was possible to prepare a sample with minimal thickness (less than 1000 A) to get high spatial resolution in TEM observation. Based on this novel thinning technique, some applications such as XTEM observation of W-plug with different aspect ratio (I - 6), and the grain structure of CVD W-plug and CVD WSix were done. Also the problems and artifacts of XTEM sample preparation of high Z-factor material such as CVD W-plug and CVD WSix were given and the ways to avoid or minimize them were suggested.


Author(s):  
Chin Kai Liu ◽  
Chi Jen. Chen ◽  
Jeh Yan.Chiou ◽  
David Su

Abstract Focused ion beam (FIB) has become a useful tool in the Integrated Circuit (IC) industry, It is playing an important role in Failure Analysis (FA), circuit repair and Transmission Electron Microscopy (TEM) specimen preparation. In particular, preparation of TEM samples using FIB has become popular within the last ten years [1]; the progress in this field is well documented. Given the usefulness of FIB, “Artifact” however is a very sensitive issue in TEM inspections. The ability to identify those artifacts in TEM analysis is an important as to understanding the significance of pictures In this paper, we will describe how to measure the damages introduced by FIB sample preparation and introduce a better way to prevent such kind of artifacts.


Sign in / Sign up

Export Citation Format

Share Document