scholarly journals Tensile-Shear Mechanical Behaviors of Friction Stir Spot Weld and Adhesive Hybrid Joint: Experimental and Numerical Study

Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1028
Author(s):  
Guishen Yu ◽  
Xin Chen ◽  
Biao Zhang ◽  
Kaixuan Pan ◽  
Lifei Yang

In this work, the tensile-shear mechanical behaviors of friction stir spot weld and adhesive hybrid joint were performed from both numerical and experimental viewpoints. Weld through (WT) and flow in (FI) processes were studied in this research. The focus was to evaluate joint defects, tensile-shear failure load (TSFL), failure energy, failure mode and stress distribution of the joint. In FI joints, keyhole and hook defects appeared in the weld zone and the areas of material removed from the base metal were filled with adhesive. In the WT joints, the adhesive layer close to the weld zone was carbonized due to the welding heat. Meanwhile, under the rotating movement of welding tool, the adhesive impurities entered the stirring zone (SZ) and heat affected zone (HAZ) of the weld, which decreased mechanical performances of WT joints. Compared to the friction stir spot welding (FSSW) joint, the TSFL value, stiffness and failure energy of FI joint were increased by 2.7, 1.1 and 8.14 times, respectively. In order to study the stress distribution of the joints, a finite element (FE) model, which considered the weld structure and mechanical properties of weld regions, was implemented. Moreover, the adhesive layer was simplified by the cohesive zone model (CZM). FE results show that the FI process effectively decreases the stress concentration of the weld edge from 243.09 to 15.5 MPa, under the 2 kN tensile load. The weld can block the adhesive crack propagation, and the adhesive optimized the stress distribution of FI joints through a synergistic effect. So, the use of FI process for aluminum alloy connection is strongly recommended, especially in crucial structure areas.

Author(s):  
Lijuan Liao ◽  
Toshiyuki Sawa ◽  
Chenguang Huang

The failure mechanism of scarf joints with a series of angles and brittle-ductile adhesives subjected to uniaxial tensile loads is analyzed by using a numerical method which employs a cohesive zone model (CZM) with a bilinear shape in mixed-mode (mode I and II). The adopted methodology is validated via comparisons between the present simulated results and the existing experimental measurements, which illustrate that the load-bearing capacity increases as the scarf angle decreases. More important, it is observed that the failure of the joint is governed by not only the ultimate tensile loads, but also the applied tensile displacement until complete failure, which is related to the brittle-ductile properties of the adhesive layer. In addition, failure energy, which is defined by using the area of the load-displacement curve of the joint, is adopted to estimate the joint strength. Subsequently, the numerical results show that the strength of the joint adopting ductile adhesive with higher failure energy is higher than that of the joint using brittle adhesive with lower failure energy.


2017 ◽  
Vol 22 (1) ◽  
pp. 104-124
Author(s):  
Ganiy Akhmet ◽  
Ye Yu ◽  
Ping Hu ◽  
Wen-bin Hou ◽  
Xiao Han

Stress analysis of adhesively bonded joints of sandwich structures is more complex. Only a few research works have studied this subject. The major obstacle is finding the stress distribution at the adhesive layer of sandwich structures under different loading conditions. This paper presents a study on stress distribution at the adhesive joints of the corrugated sandwich structure subjected to three-point bending using the cohesive zone model. Firstly, three cases of sandwich models with different types of glue on both longitudinal and transverse loading directions were calculated using cohesive zone model, and then the corresponding experiments were carried out and compared to prove the FEM results to validate the results through both load–displacement curves and failure deformation modes. Secondly, the cohesive zone model simulation was used to obtain the detailed stress distribution at the bonding joint with the effect of four major geometrical parameters: adhesive layer thickness, corrugated panel thickness, face panel thickness and adhesive joint width. Lastly, the results of stress analysis showed that the stress distribution is not uniform and is highly affected by the bonding joint's geometrical parameters, adhesive layer thickness and adhesive joint width.


2020 ◽  
Vol 118 (1) ◽  
pp. 108
Author(s):  
M.A. Vinayagamoorthi ◽  
M. Prince ◽  
S. Balasubramanian

The effects of 40 mm width bottom plates on the microstructural modifications and the mechanical properties of a 6 mm thick FSW AA6061-T6 joint have been investigated. The bottom plates are placed partially at the weld zone to absorb and dissipate heat during the welding process. An axial load of 5 to 7 kN, a rotational speed of 500 rpm, and a welding speed of 50 mm/min are employed as welding parameters. The size of the nugget zone (NZ) and heat-affected zone (HAZ) in the weld joints obtained from AISI 1040 steel bottom plate is more significant than that of weld joints obtained using copper bottom plate due to lower thermal conductivity of steel. Also, the weld joints obtained using copper bottom plate have fine grain microstructure due to the dynamic recrystallization. The friction stir welded joints obtained with copper bottom plate have exhibited higher ductility of 8.9% and higher tensile strength of 172 MPa as compared to the joints obtained using a steel bottom plate.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3110
Author(s):  
Kaveripakkam Suban Ashraff Ali ◽  
Vinayagam Mohanavel ◽  
Subbiah Arungalai Vendan ◽  
Manickam Ravichandran ◽  
Anshul Yadav ◽  
...  

This study focuses on the properties and process parameters dictating behavioural aspects of friction stir welded Aluminium Alloy AA6061 metal matrix composites reinforced with varying percentages of SiC and B4C. The joint properties in terms of mechanical strength, microstructural integrity and quality were examined. The weld reveals grain refinement and uniform distribution of reinforced particles in the joint region leading to improved strength compared to other joints of varying base material compositions. The tensile properties of the friction stir welded Al-MMCs improved after reinforcement with SiC and B4C. The maximum ultimate tensile stress was around 172.8 ± 1.9 MPa for composite with 10% SiC and 3% B4C reinforcement. The percentage elongation decreased as the percentage of SiC decreases and B4C increases. The hardness of the Al-MMCs improved considerably by adding reinforcement and subsequent thermal action during the FSW process, indicating an optimal increase as it eliminates brittleness. It was seen that higher SiC content contributes to higher strength, improved wear properties and hardness. The wear rate was as high as 12 ± 0.9 g/s for 10% SiC reinforcement and 30 N load. The wear rate reduced for lower values of load and increased with B4C reinforcement. The microstructural examination at the joints reveals the flow of plasticized metal from advancing to the retreating side. The formation of onion rings in the weld zone was due to the cylindrical FSW rotating tool material impression during the stirring action. Alterations in chemical properties are negligible, thereby retaining the original characteristics of the materials post welding. No major cracks or pores were observed during the non-destructive testing process that established good quality of the weld. The results are indicated improvement in mechanical and microstructural properties of the weld.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Huijie Liu ◽  
Yunqiang Zhao ◽  
Xingye Su ◽  
Lilong Yu ◽  
Juncai Hou

2A12-T4 aluminum alloy was friction stir spot welded, and the microstructural characteristics and mechanical properties of the joints were investigated. A softened microstructural region existed in the joint, and it consisted of stir zone (SZ), thermal mechanically affected zone (TMAZ), and heat affected zone (HAZ). The minimum hardness was located in TMAZ, and the average hardness value in SZ can be improved by appropriately increasing welding heat input. The area of complete bonding region at the interface increased with increasing welding heat input because more interface metals were mixed. In a certain range of FSSW parameters, the tensile shear failure load of the joint increased with increasing rotation speed, but it decreased with increasing plunge rate or decreasing shoulder plunging depth. Two kinds of failure modes, that is, shear fracture mode and tensile-shear mixed fracture mode, can be observed in the tensile shear tests, and the joint that failed in the tensile-shear mixed fracture mode possessed a high carrying capability.


2005 ◽  
Vol 486-487 ◽  
pp. 249-252 ◽  
Author(s):  
Chang Yong Lee ◽  
Won Bae Lee ◽  
Yun Mo Yeon ◽  
Seung Boo Jung

Friction stir welding of dissimilar formed Mg alloys(AZ31/AZ91) was successfully carried out at the limited welding conditions. In a sound joint, SZ was mainly consisted of AZ31 Mg alloy which was located the retreating side. Dynamic recrystallization and grain growth occurred and β intermetallic compounds of AZ 91 Mg alloy was not observed in SZ. BM had a higher hardness than that of the weld zone. The fracture location was not weld zone but BM of the AZ91 Mg alloy in tensile test.


Sign in / Sign up

Export Citation Format

Share Document