scholarly journals Effects of Substitution of Y with Yb and Ce on the Microstructures and Mechanical Properties of Mg88.5Zn5Y6.5

Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Hongxin Liao ◽  
Taekyung Lee ◽  
Jiangfeng Song ◽  
Jonghyun Kim ◽  
Fusheng Pan

The microstructures and mechanical properties of the Mg88.5Zn5Y6.5-XREX (RE = Yb and Ce, X = 0, 1.5, 3.0, and 4.5) (wt.%) alloys were investigated in the present study. Mg88.5Zn5Y6.5 is composed of three phases, namely, α-Mg, long-period stacking ordered (LPSO) phases, and intermetallic compounds. The content of the LPSO phases decreased with the addition of Ce and Yb, and no LPSO phases were detected in Mg88.5Zn5Y2.0Yb4.5. The alloys containing the LPSO phases possessed a stratified microstructure and exhibited excellent mechanical properties. Mg88.5Zn5Y5.0Ce1.5 exhibited the highest creep resistance and mechanical strength at both room temperature and 200 °C, owing to its suitable microstructure and high thermal stability. The yield strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature was 358 MPa. The ultimate tensile strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature and 200 °C was 453 MPa and 360 MPa, respectively.

Author(s):  
B. F. Luan ◽  
L. Q. Yang ◽  
T. G. Wei ◽  
K. L. Murty ◽  
C. S. Long ◽  
...  

To investigate the effects of Mo and Bi on mechanical properties of a Zr-Fe-Cr alloy at room temperature, seven Zr-Fe-Cr-Mo-Bi alloys with different compositions were designed. They were subjected to a series of rolling processes and heat treatments, and then sampled to measure mechanical properties by hardness and tensile test and to characterize microstructures by scanning electron microscope (SEM) and electron channel contrast (ECC) technique. Results indicated that among them two types of Zr-Fe-Cr-Mo-Bi alloys achieve the designed goals on mechanical properties and have the following advantages: (i) the hardness of the alloys, up to 334HV after annealing, is 40% higher than traditional Zr-4. (ii) The yield strength (YS) and ultimate tensile strength (UTS) of the alloys are 526 MP a and 889 MP a after hot rolling and annealing, markedly higher than the traditional Zr alloy. (iii) Good plasticity of the new Zr-Fe-Cr-Mo-Bi alloy is obtained with about 40% elongation, which is greatly higher than the Zr-Fe-Cr-Mo alloy thanks to the addition of Bi offsetting the disadvantage of addition Mo. Furthermore, according to observations of the microstructure observation, the reasons of the effect of the Mo and Bi elements on the mechanical performance of Zr-Fe-Cr alloy were studied and discussed.


1990 ◽  
Vol 206 ◽  
Author(s):  
G. W. Nieman ◽  
J. R. Weertman ◽  
R. W. Siegel

ABSTRACTMeasurements of tensile strength and creep resistance have been made on bulk samples of nanocrystalline Cu, Pd and Ag consolidated from powders by cold compaction. Samples of Cu-Cu2O have also been tested. Yield strength for samples with mean grain sizes of 5–80 nm and bulk densities on the order of 95% of theoretical density are increased 2–5 times over that measured in pure, annealed samples of the same composition with micrometer grain sizes. Ductility in the nanocrystalline Cu has exceeded 6% true strain, however, nanocrystalline Pd samples were much less ductile. Constant load creep tests performed at room temperature at stresses of >100 MPa indicate logarithmic creep. The mechanical properties results are interpreted to be due to grain size-related strengthening and processing flaw-related weakening.


2011 ◽  
Vol 686 ◽  
pp. 96-100
Author(s):  
Shu Bo Li ◽  
Han Li ◽  
Jian Hui Li ◽  
Wen Bo Du ◽  
Zhao Hui Wang

The microstructures and mechanical properties of the Mg-Zn-Er alloys have been investigated. The results show that the alloying elements (Zn/Er) with different ratio have a great effect on the microstructure and mechanical properties of the magnesium alloys, especially for the phase constitutes. Furthermore, the more attractive result is that the quasicrystalline phase, as the main secondary phase, precipitates during solidification in the alloy with addition of Zn/Er ration of 6. The cast Mg-5Zn-0.83Er alloy exhibits the ultimate tensile strength and yield tensile strength are 190MPa and 80MPa at room temperature, respectively, with an elongation of 15%.


2007 ◽  
Vol 546-549 ◽  
pp. 305-310
Author(s):  
Bao Yi Yu ◽  
Yu Ying Li ◽  
Hong Wu Song ◽  
Xiao Guang Yuan ◽  
Zhen Liu

Microstructures and tensile properties of Mg-8Zn-4Al-xCax=0.6wt.%, 1.0wt.%, 1.3wt.%, named as alloy 1#, 2# and 3# , respectively)extruded magnesium alloy tube were studied at room and elevated temperature. The results show that Ca can increase tensile strength of the alloy at 150 and 200°C significantly. At the temperature of 200°C, alloy 3# achieved optimal tensile properties, of which the ultimate tensile strength, the yield strength and the elongation were 165.8MPa, 108.7Mpa and 41.5% respectively. Compared with the properties of as cast ZAC8506 Magnesium alloy, it is shown that the tensile properties of alloy 3# are much higher than that of ZAC8506 at both room temperature and 150°C. Alloy 3# also gets better tensile performance than AZ91D extruded tube produced in the same way at the temperature of 200°C Mg2Al3 and Ca2Mg5Zn13 phases are found in the microstructure which should contribute to the higher performance of alloy 3# at elevated temperature


2017 ◽  
Vol 727 ◽  
pp. 124-131
Author(s):  
Cai Chen ◽  
Rui Wang ◽  
Xing Hao Du ◽  
Bao Lin Wu

In this work, the tensile properties of AZ31 Mg alloy deformed by multi-directional forging (MDF) were investigated at room temperature. And the enhanced mechanical properties of yield strength of 93 MPa, ultimate tensile strength (UTS) of 253 MPa and elongation of 29% were achieved. It is discovered that the MDF deformation makes the crystallographic orientation of original as-cast microstructure randomization, providing the condition for the following twinning during tensile deformation. In addition, the original fine grains and continuously refined grains can enhance the strength by restricting the growth of grains and motion of dislocations.


2012 ◽  
Vol 482-484 ◽  
pp. 1530-1533
Author(s):  
Ming Li Huang ◽  
Hua Ying Li ◽  
Hua Ding

In the present work, mechanical properties and microstructures of hot-rolled and solution-treated Fe-26Mn-6Al-1C steel (6Al steel) were investigated. Tensile tests were carried out at room temperature. The samples were characterized by using XRD, OM, SEM and TEM. The results suggested that the microstructure of the hot rolled 6Al steel was fully austenitic. After solution treatment and deformation, the microstructure was still single austenite. With the increase of the solution treatment temperatures, the strength decreased and the elongation increased. After solution treated at 1100°C for 1h, the yield strength, ultimate tensile strength and elongation were 378MPa, 756MPa and 57%.


2011 ◽  
Vol 311-313 ◽  
pp. 1873-1878
Author(s):  
Shu Zhi Zhang ◽  
Fan Tao Kong ◽  
Yu Yong Chen ◽  
Shu Long Xiao ◽  
Chao Cao

Ti-47Al-2Cr-2Nb-Y alloy pancake were produced by hot-pack forging. The microstructure of as-forged Ti-47Al-2Cr-2Nb-Y alloy were investigated by optical microscopy and scanning electron microscopy, showing that the forged alloy was composed of fine γ grains and retain cast lamella colonies surrounded by elongated B2 phase. Tensile properties of the material showed that yield strength (YS) and ultimate tensile strength (UTS) were decreased from 500MPa and 612MPa at room temperature to 420 MPa and 462 MPa at 800°C, respectively. With the temperature increasing to 900°C, elongation reached 120%.


2016 ◽  
Vol 848 ◽  
pp. 588-592 ◽  
Author(s):  
Yan Le Sun ◽  
Li Ming Fu ◽  
Li Feng Lv ◽  
Run Jiang Guo ◽  
Xue Feng Yao ◽  
...  

To provide insight into the mechanical behavior and microstructural evolution of bulk nanograined (NG) Ni-based alloys during annealing, the Ni-based alloy sheets with grain size about 50 nm was produced through severe cold-rolling at room temperature, and then the cold rolled (CRed) Ni-based alloys were annealed at different states. The evolution of the nanostructure of the CRed Ni-based alloy during annealing and corresponding change in mechanical properties was investigated. The results showed that the CRed Ni-based alloy exhibited prominent enhancement in the yield strength (YS), ultimate tensile strength (UTS), which increased respectively from 253 MPa to 1455 MPa, 684 MPa to 1557 MPa. Further increase of the YS and UTS were obtained in the annealed-CRed Ni-based alloy with dual-phase. The YS and UTS of the NG dual-phase Ni-based alloy was respectively 2013 MPa and 2061MPa, which was annealed at 700 °C for 1h. In terms of the microstructural evolution, lower density of defects on the grain boundary were observed and the nanograins can be maintained about 100 nm even when annealed for 30 h at 700 °C, which suggests high thermal stability at this temperature. Both the high thermal stability and strength are due to the formation of the γ′ precipitates and slight grain growth of the NG matrix.


2015 ◽  
Vol 816 ◽  
pp. 439-445 ◽  
Author(s):  
Xiao Hui Feng ◽  
Hong Min Jia ◽  
Tian Jiao Luo ◽  
Yun Teng Liu ◽  
Ji Xue Zhou ◽  
...  

The microstructure and mechanical properties of the high-purity magnesium (99.99wt.% Mg) extruded by single direct extrusion experiment were investigated. For the extrusion speed of 0.2mm/s, the microstructure of extruded Mg rods was composed of equiaxed fine dynamical recrystallized (DRXed) grains and some elongated coarse un-DRXed grains. The yield strength (YS) and the elongation of the extruded bars were 105.3MPa and 46.7% respectively. In the case of extrusion speed of 4.0mm/s, the DRXed grains were remarkably coarsened and the elongated coarse un-DRXed grains vanished, meanwhile lots of twins occurred and the intensity of basal-plane texture increased a little. With the extrusion speed being raised from 0.2mm/s to 4.0mm/s, the YS and the elongation decreased to 60.5MPa and 22.1% respectively, but the ultimate tensile strength (UTS) was improved from 154.7MPa to 178.8MPa.


2022 ◽  
Vol 327 ◽  
pp. 82-97
Author(s):  
He Qin ◽  
Guang Yu Yang ◽  
Shi Feng Luo ◽  
Tong Bai ◽  
Wan Qi Jie

Microstructures and mechanical properties of directionally solidified Mg-xGd (5.21, 7.96 and 9.58 wt.%) alloys were investigated at a wide range of growth rates (V = 10-200 μm/s) under the constant temperature gradient (G = 30 K/mm). The results showed that when the growth rate was 10 μm/s, different interface morphologies were observed in three tested alloys: cellular morphology for Mg-5.21Gd alloy, a mixed morphology of cellular structure and dendritic structure for Mg-7.96Gd alloy and dendrite morphology for Mg-9.58Gd alloy, respectively. Upon further increasing the growth rate, only dendrite morphology was exhibited in all experimental alloys. The microstructural parameters (λ1, λ2) decreased with increasing the growth rate for all the experimental alloy, and the measured λ1 and λ2 values were in good agreement with Trivedi model and Kattamis-Flemings model, respectively. Vickers hardness and the ultimate tensile strength increased with the increase of the growth rate and Gd content, while the elongation decreased gradually. Furthermore, the relationships between the hardness, ultimate tensile strength, the growth rate and the microstructural parameters were discussed and compared with the previous experimental results.


Sign in / Sign up

Export Citation Format

Share Document