Microstructure and Mechanical Properties of as-Forged Ti-47Al-2Cr-2Nb-Y Alloy

2011 ◽  
Vol 311-313 ◽  
pp. 1873-1878
Author(s):  
Shu Zhi Zhang ◽  
Fan Tao Kong ◽  
Yu Yong Chen ◽  
Shu Long Xiao ◽  
Chao Cao

Ti-47Al-2Cr-2Nb-Y alloy pancake were produced by hot-pack forging. The microstructure of as-forged Ti-47Al-2Cr-2Nb-Y alloy were investigated by optical microscopy and scanning electron microscopy, showing that the forged alloy was composed of fine γ grains and retain cast lamella colonies surrounded by elongated B2 phase. Tensile properties of the material showed that yield strength (YS) and ultimate tensile strength (UTS) were decreased from 500MPa and 612MPa at room temperature to 420 MPa and 462 MPa at 800°C, respectively. With the temperature increasing to 900°C, elongation reached 120%.

2019 ◽  
Vol 34 (01n03) ◽  
pp. 2040035
Author(s):  
Xiang Cai ◽  
Yanxin Qiao ◽  
Baojie Wang ◽  
Huiling Zhou ◽  
Yuxin Wang

The influence of rolling on nanomechanical and mechanical behavior of Mg-7Li alloy was investigated by nanoindentation, tensile test and scanning electron microscopy (SEM), respectively. The [Formula: see text]-Mg phase elongated along the rolling direction and gradually cracked. As the rolling ratio increased from 3 to 10, the hardness of [Formula: see text]-Mg and [Formula: see text]-Li phase increased by 7.35% and 20.75%, respectively. The fracture of alloys changed from ductile fracture to quasi-cleavage fracture. The yield strength and ultimate tensile strength increased by 23 MPa and 12 MPa, respectively, while elongation reduced by 12.5%.


Author(s):  
B. F. Luan ◽  
L. Q. Yang ◽  
T. G. Wei ◽  
K. L. Murty ◽  
C. S. Long ◽  
...  

To investigate the effects of Mo and Bi on mechanical properties of a Zr-Fe-Cr alloy at room temperature, seven Zr-Fe-Cr-Mo-Bi alloys with different compositions were designed. They were subjected to a series of rolling processes and heat treatments, and then sampled to measure mechanical properties by hardness and tensile test and to characterize microstructures by scanning electron microscope (SEM) and electron channel contrast (ECC) technique. Results indicated that among them two types of Zr-Fe-Cr-Mo-Bi alloys achieve the designed goals on mechanical properties and have the following advantages: (i) the hardness of the alloys, up to 334HV after annealing, is 40% higher than traditional Zr-4. (ii) The yield strength (YS) and ultimate tensile strength (UTS) of the alloys are 526 MP a and 889 MP a after hot rolling and annealing, markedly higher than the traditional Zr alloy. (iii) Good plasticity of the new Zr-Fe-Cr-Mo-Bi alloy is obtained with about 40% elongation, which is greatly higher than the Zr-Fe-Cr-Mo alloy thanks to the addition of Bi offsetting the disadvantage of addition Mo. Furthermore, according to observations of the microstructure observation, the reasons of the effect of the Mo and Bi elements on the mechanical performance of Zr-Fe-Cr alloy were studied and discussed.


2019 ◽  
Vol 9 (9) ◽  
pp. 1856
Author(s):  
Miao-Miao Fang ◽  
Hong Yan ◽  
Xian-Chen Song ◽  
Yong-Hui Sun

The microstructure and mechanical properties of AlSi5Cu1Mg alloy with (Pr+Ce) addition were investigated by optical microscopy (OM), energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM). The results demonstrated that the rare earth (Pr+Ce) addition refined the grain. The long needle-like eutectic Si phases turned to granual. The secondary dendrite arm spacing (SADS) of the primary α-Al phase with the AlSi5Cu1Mg+0.6 wt.% (Pr+Ce) alloy reached the minimum value, which decreased by 50.2%. The mean length and the aspect ratio of the eutectic Si decreased by 78.8% and 67.4%. The ultimate tensile strength (UTS), the microhardness, and the breaking elongation of the AlSi5Cu1Mg+0.6 wt.% (Pr+Ce) alloy reached a maximum, and increased by 21.5%, 21.7%, and 8.0% compared to the AlSi5Cu1Mg alloy. The fracture examinations manifested in cleaved surfaces and brittle fracture areas, which were seen from the AlSi5Cu1Mg+0.6 wt.% (Pr+Ce) alloy. The number of dimples slightly increased.


2012 ◽  
Vol 452-453 ◽  
pp. 31-34
Author(s):  
Xuan Xiao ◽  
Zeng Chao ◽  
Xu Le ◽  
Li Yuan Sheng ◽  
Yong An Guo ◽  
...  

In order to figure out whether Gallium works in the superalloy K444, its composition had been modified by adding about 0.003 wt.% and 0.01 wt.% Ga, respectively. Mechanical properties of the modified superalloy K444 were investigated by using scanning electron microscopy (SEM) after standard heat treatment. Gallium had no significant effect on the tensile strength at room temperature and 900 °C. Gallium had a little effect on the tensile plasticity at room temperature and 900 °C. The plasticity is better in the modified K444 alloy containing 0.003wt. % Ga, however, the plasticity became worse in the alloy containing 0.01wt. % Ga. As for plasticity, the optimum Gallium content should be 0.003 wt. % for the superalloy K444.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2174
Author(s):  
Diana Gregor-Svetec ◽  
Mirjam Leskovšek ◽  
Blaž Leskovar ◽  
Urška Stanković Elesini ◽  
Urška Vrabič-Brodnjak

Polylactic acid (PLA) is one of the most suitable materials for 3D printing. Blending with nanoparticles improves some of its properties, broadening its application possibilities. The article presents a study of composite PLA matrix filaments with added unmodified and lignin/polymerised lignin surface-modified nanofibrillated cellulose (NFC). The influence of untreated and surface-modified NFC on morphological, mechanical, technological, infrared spectroscopic, and dynamic mechanical properties was evaluated for different groups of samples. As determined by the stereo and scanning electron microscopy, the unmodified and surface-modified NFCs with lignin and polymerised lignin were present in the form of plate-shaped agglomerates. The addition of NFC slightly reduced the filaments’ tensile strength, stretchability, and ability to absorb energy, while in contrast, the initial modulus slightly improved. By adding NFC to the PLA matrix, the bending storage modulus (E’) decreased slightly at lower temperatures, especially in the PLA samples with 3 wt% and 5 wt% NFC. When NFC was modified with lignin and polymerised lignin, an increase in E’ was noticed, especially in the glassy state.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Hongxin Liao ◽  
Taekyung Lee ◽  
Jiangfeng Song ◽  
Jonghyun Kim ◽  
Fusheng Pan

The microstructures and mechanical properties of the Mg88.5Zn5Y6.5-XREX (RE = Yb and Ce, X = 0, 1.5, 3.0, and 4.5) (wt.%) alloys were investigated in the present study. Mg88.5Zn5Y6.5 is composed of three phases, namely, α-Mg, long-period stacking ordered (LPSO) phases, and intermetallic compounds. The content of the LPSO phases decreased with the addition of Ce and Yb, and no LPSO phases were detected in Mg88.5Zn5Y2.0Yb4.5. The alloys containing the LPSO phases possessed a stratified microstructure and exhibited excellent mechanical properties. Mg88.5Zn5Y5.0Ce1.5 exhibited the highest creep resistance and mechanical strength at both room temperature and 200 °C, owing to its suitable microstructure and high thermal stability. The yield strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature was 358 MPa. The ultimate tensile strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature and 200 °C was 453 MPa and 360 MPa, respectively.


2018 ◽  
Vol 186 ◽  
pp. 02001
Author(s):  
Teng-wei Zhu ◽  
Cheng-liang Miao ◽  
Zheng Cheng ◽  
Zhipeng Wang ◽  
Yang Cui ◽  
...  

The influence of the mechanical properties of X70 pipeline steel under different annealing temperature was studied. The corresponding microstructure was investigated by the Field Emission Scanning Electron Microscopy. The results showed that the yield strength and the tensile strength both experienced from rise to decline with the increase of annealing temperature. The grain sizes were coarse and a large amount of cementite precipitated due to preserving temperature above 550 °, which induced matrix fragmentation and deteriorate the -10 ° DWTT Toughness. There were little changes on the microstructure and mechanical properties when the annealing temperature was under 500 °.


2012 ◽  
Vol 729 ◽  
pp. 246-251 ◽  
Author(s):  
Sándor Kling ◽  
Tibor Czigány

The geometry and mechanical properties of solid and hollow carbon fibres were investigated by light-and scanning electron microscopy, and by single fibre tensile tests. The hollowness factor of fibres was determined by their external and internal diameter. The tensile strength was determined by single fibre tensile break tests. It was shown that the bigger the diameter of the fibres the lower the mechanical properties is. It was found that the hollow carbon fibres are suitable for preparation of a self-repairing composite with the advantage over other solutions because of their geometrical and mechanical properties.


2013 ◽  
Vol 750-752 ◽  
pp. 671-674
Author(s):  
Rong Hua Zhang ◽  
Yong An Zhang ◽  
Bao Hong Zhu

In this paper, the Al-8.5Fe-1.3V-1.7Si alloys were fabricated by spray forming and extrusion process. The microstructure and mechanical properties of the alloy were investigated by means of metallographic, scanning electron microscope and tensile test. The results indicate that the tensile strength of the extrued alloys can reach 353MPa, the yield strength 300MPa, elongation 19.12%, at room temperature. At 250°C, the tensile strength of the extrued alloys can reach 221MPa, the yield strength 208MPa, elongation 13.33%.


Author(s):  
C Pandey ◽  
MM Mahapatra

In the present investigation, a systematic study has been undertaken with regard to the effects of tempering time on room temperature mechanical properties of P91 (X10CrMoVNNB9-1) steel. Samples cut from P91 (X10CrMoVNNB9-1) industrial pipe were normalized at 1040 ℃ for 40 min and then tempered at 760 ℃ for different tempering times starting from 2 h to 8 h. Detailed analysis of microstructure, particle size, inter-particle spacing, and secondary phase carbide particles of the tempered samples was conducted by secondary electron microscopy technique. Optical microscopy was also utilized to characterize the tempered samples and for the measurement of grain size. In order to reveal the various phases formed during tempering of P91 (X10CrMoVNNB9-1) steel, X-ray diffraction was carried out . To study the fracture surface morphology of tensile tested and impact tested specimen field-emission scanning electron microscopy was carried out. The effect of tempering time on the microstructural parameters revealed an increase in grain size up to 4 h of tempering and then decreased because of recrystallization. The coarsening of secondary phase carbide particles M23C6 was revealed with an increase in tempering time. As a consequence, yield strength, hardness, and ultimate tensile strength were observed to decrease with increase in the tempering time. However, a drastic change was observed in the yield strength, ultimate tensile strength, and toughness after tempering for 6 h. From the present study, it was concluded that optimum combination of yield stress, ultimate tensile strength, hardness, and toughness obtained after tempering at 760 ℃ for 6 h.


Sign in / Sign up

Export Citation Format

Share Document