scholarly journals Mechanical Alloying Process Applied for Obtaining a New Biodegradable Mg-xZn-Zr-Ca Alloy

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 132
Author(s):  
Doina Raducanu ◽  
Vasile Danut Cojocaru ◽  
Anna Nocivin ◽  
Radu Hendea ◽  
Steliana Ivanescu ◽  
...  

The aim of the present paper is to apply the mechanical alloying process to obtain from powder components a new biodegradable Mg-based alloy powder from the system Mg-xZn-Zr-Ca, with high biomechanical and biochemical performance. Various processing parameters for mechanical alloying have been experimented with the ultimate goal to establish an efficient processing route for the production of small biodegradable parts for the medical domain. It has been observed that for the same milling parameters, the composition of the powders has influenced the powder size and shape. On the other hand, for the same composition, the highest experimented milling speed and time conduct to finer powder particles, almost round-shaped, without pores or various inclusions. The most uniform size has been obtained for the powder sample with 10 wt.%Zn. These powders were finally processed by selective laser melting, an additive manufacturing technology, to obtain a homogeneous experimental sample, without cracking, for future more systematical trials.

Materials ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 226
Author(s):  
Sabina Lesz ◽  
Bartłomiej Hrapkowicz ◽  
Małgorzata Karolus ◽  
Klaudiusz Gołombek

Magnesium-based materials are interesting alternatives for medical implants, as they have promising mechanical and biological properties. Thanks to them, it is possible to create biodegradable materials for medical application, which would reduce both costs and time of treatment. Magnesium as the sole material, however, it is not enough to support this function. It is important to determine proper alloying elements and methods. A viable method for creating such alloys is mechanical alloying, which can be used to design the structure and properties for proper roles. Mechanical alloying is highly influenced by the milling time of the alloy, as the time of the process affects many properties of the milled powders. X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS) were carried out to study the powder morphology and chemical composition of Mg65Zn30Ca4Gd1 powders. Moreover, the powder size was assessed by granulometric method and the Vickers hardness test was used for microhardness testing. The samples were milled for 6 min, 13, 20, 30, 40, and 70 h. The hardness correlated with the particle size of the samples. After 30 h of milling time, the average value of hardness was equal to 168 HV and it was lower after 13 (333 HV), 20 (273 HV), 40 (329 HV), and 70 (314 HV) h. The powder particles average size increased after 13 (31 μm) h of milling time, up to 30 (45–49 μm) hours, and then sharply decreased after 40 (28 μm) and 70 (12 μm) h.


2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
H. P. Li

Energy-efficient processing of TiB compound with nanowhiskers by micropyretic synthesis is investigated in this paper. Micropyretic synthesis not only offers shorter processing time but also excludes the requirement for high-temperature sintering and it is considered as the one of the novel energy-saving processing techniques. Experimental study and numerical simulation are both carried out to investigate the correlation of the processing parameters on the microstructures of the micropyretically synthesized products. The diffusion-controlled reaction mechanism is proposed in this study. It is noted that nanosize TiB whiskers only occurred when the combustion temperature is lower than the melting point of TiB but higher than the extinguished temperature. The results generated in the numerical calculation can be used as a helpful reference to select the proper route of processing nanosize materials. The Arrhenius-type plot of size and temperature is used to calculate the activation energy of TiB reaction. In addition to verifying the accuracy of the experimental measures, the reaction temperature for producing the micropyretically synthesized products with nanofeatures can be predicted.


1996 ◽  
Vol 455 ◽  
Author(s):  
J. J. Suñol ◽  
M. T. Clavaguera-Mora ◽  
N. Clavaguera ◽  
T. Pradell

ABSTRACTMechanical alloying and rapid solidification are two important routes to obtain glassy alloys. New Fe-Ni based metal-metalloid (P-Si) alloys prepared by these two different processing routes were studied by differential scanning calorimetry and transmission Mössbauer spectroscopy. Mechanical alloyed samples were prepared with elemental precursors, and different nominal compositions. Rapidly solidified alloys were obtained by melt-spinning. The structural analyses show that, independent of the composition, the materials obtained by mechanical alloying are not completely disordered whereas fully amorphous alloys were obtained by rapid solidification. Consequently, the thermal stability of mechanically alloyed samples is lower than that of the analogous material prepared by rapid solidification. The P/Si ratio controls the magnetic interaction of the glassy ribbons obtained by rapid solidification. The experimental results are discussed in terms of the degree of amorphization and crystallization versus processing route and P/Si ratio content.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1225
Author(s):  
Cristina García-Garrido ◽  
Ranier Sepúlveda Sepúlveda Ferrer ◽  
Christopher Salvo ◽  
Lucía García-Domínguez ◽  
Luis Pérez-Pozo ◽  
...  

In this work, a blend of Ti, Nb, and Mn powders, with a nominal composition of 15 wt.% of Mn, and balanced Ti and Nb wt.%, was selected to be mechanically alloyed by the following two alternative high-energy milling devices: a vibratory 8000D mixer/mill® and a PM400 Retsch® planetary ball mill. Two ball-to-powder ratio (BPR) conditions (10:1 and 20:1) were applied, to study the evolution of the synthesized phases under each of the two mechanical alloying conditions. The main findings observed include the following: (1) the sequence conversion evolved from raw elements to a transitory bcc-TiNbMn alloy, and subsequently to an fcc-TiNb15Mn alloy, independent of the milling conditions; (2) the total full conversion to the fcc-TiNb15Mn alloy was only reached by the planetary mill at a minimum of 12 h of milling time, for either of the BPR employed; (3) the planetary mill produced a non-negligible Fe contamination from the milling media, when the highest BPR and milling time were applied; and (4) the final fcc-TiNb15Mn alloy synthesized presents a nanocrystalline nature and a partial degree of amorphization.


2007 ◽  
Vol 336-338 ◽  
pp. 10-13 ◽  
Author(s):  
Shi Xi Zhao ◽  
Qiang Li ◽  
Feng Bing Song ◽  
Chun Hong Li ◽  
De Zhong Shen

Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) solid solutions with composition near the morphotropic phase boundary (MPB) (33mol% PT) were successfully synthesized by the molten salt synthesis (MSS) method at 800°C for 30min using Li2SO4-Na2SO4 and NaCl-KCl molten salts as a medium of reaction, respectively. The influences of processing parameters, such as temperature, time, and type of salts, on the formation and the micrographs characteristics of the PMN-PT powders were discussion. It was found that the PMN-PT powder obtained by the MSS method has a relatively uniform size distribution and a better dispersivity of particle, and an average size of PMN-PT particles with smooth surface was around 0.3∼0.5 μm. With other conditions being kept same, chloride molten salt is more propitious to the formation of PMN- PT solid solutions, and improving the compositional homogeneity of PMN-PT powders.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1626
Author(s):  
Benoît Fer ◽  
David Tingaud ◽  
Azziz Hocini ◽  
Yulin Hao ◽  
Eric Leroy ◽  
...  

This paper gives some insights into the fabrication process of a heterogeneous structured β-metastable type Ti-24Nb-4Zr-8Sn alloy, and the associated mechanical properties optimization of this biocompatible and low elastic modulus material. The powder metallurgy processing route includes both low energy mechanical ball milling (BM) of spherical and pre-alloyed powder particles and their densification by Spark Plasma Sintering (SPS). It results in a heterogeneous microstructure which is composed of a homogeneous 3D network of β coarse grain regions called “core” and α/β dual phase ultra-fine grain regions called “shell.” However, it is possible to significantly modify the microstructural features of the alloy—including α phase and shell volume fractions—by playing with the main fabrication parameters. A focus on the role of the ball milling time is first presented and discussed. Then, the mechanical behavior via shear tests performed on selected microstructures is described and discussed in relation to the microstructure and the probable underlying deformation mechanism(s).


2013 ◽  
Vol 807-809 ◽  
pp. 2707-2712 ◽  
Author(s):  
Shi Jian Yan ◽  
Xin Wei Zou ◽  
Min Gang Zhang

LaNi5-xwt%Mg hydrogen storage alloys with different Mg content were made from pure La, Mg and Ni metal powder by mechanical alloying, selecting appropriate ball-milling parameters in 0.4MPa hydrogen atmosphere. The characterizations for hydrogen storage alloy show that a multi-phase alloy composed of MgH2, LaH3, Mg2NiH4 and Ni was obtained, the alloy have two hydrogen desorption temperature range, and the alloy with 25wt% Mg content can desorb hydrogen up to 4.02wt%.


2007 ◽  
Vol 534-536 ◽  
pp. 189-192 ◽  
Author(s):  
Kazuo Isonishi

Fabrication of Fe3AlC matrix in-situ composite, reinforced by a FeAl phase, was studied by using the powder metallurgical processing route. Especially, in order to disperse the second phase more finely, we chose the mechanical alloying process. We investigated the microstructural and mechanical properties of the consolidated material. After consolidation by vacuum hot pressing, the compact showed almost full density and consisted of a Fe3AlC matrix and FeAl second phase (average particle size was less than 1μm). The compact showed HV746, which was higher than that of the arc melted Fe3AlC monolithic material, HV650.


Sign in / Sign up

Export Citation Format

Share Document