scholarly journals Ultrasonic-Assisted Laser Metal Deposition of the Al 4047Alloy

Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1111 ◽  
Author(s):  
Zhang ◽  
Guo ◽  
Chen ◽  
Kang ◽  
Cao ◽  
...  

Ultrasonic-assisted laser metal deposition(UALMD) technology was used to fabricate Al 4047 parts. The effect of the powder feeding laser power, remelting laser power and ultrasonic power on the relative density of the parts was investigated. The relative density, microstructure and mechanical properties of the specimens obtained by the optimized process parameters were compared with the corresponding properties of the cast alloys. The results showed that dense alloys with a maximum density of 99.1% were prepared using ultrasonic vibration and by remelting the previously deposited layer with the optimized processing parameters, and its density was almost equivalent to that of the cast parts. The microstructure of the samples using optimal laser parameters presented columnar Al dendrites and equiaxed Si particles at the boundary of each deposited layer, while the supersaturated Al solid solution was transformed into equiaxed crystal surrounded by fine fibrous Si phases at the center of the layer. Moreover, the size of the primary Al and the Si particles in the samples produced by UALMD was remarkably refined compared to that of the primary Al and Si particles in the cast structure, resulting in grain refining strengthening. The observed variation in the microstructure had an obvious impact on the tensile properties. The mechanical behavior of the deposit obtained by UALMD revealed superior tensile strength, yield strength and tensile ductility values of 227 ± 3 MPa, 107 ± 4 MPa and 12.2 ± 1.4%, which were approximately 51%, 38% and 56% higher than those of the cast materials, respectively.

Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 126 ◽  
Author(s):  
Yang Zhang ◽  
Yuqi Guo ◽  
Yan Chen ◽  
Yabin Cao ◽  
Haibo Qi ◽  
...  

This paper presents a method of ultrasonic-assisted laser metal deposition of Al-12Si alloy. The effects of the ultrasonic power and remelting treatment on the development of porosity, microstructural evolution, and tensile properties of the deposits were investigated. The results suggested that a combination of an ultrasonic vibration and remelting treatment could prolong the existence of the molten pool and the effect of the ultrasound. Therefore, the density of the samples increased from 95.4% to 99.1% compared to the as-prepared samples. The ultrasonic action in the molten pool could not only increase the density of the samples but also refine the grains and improve the tensile properties of the samples. Metallographic observation showed that the maximum size of the primary α-Al dendrites were refined from 277.5 µm to 87.5 µm. The ultimate tensile strength and elongation of the remelting treatment samples with ultrasonic vibration were ~227 ± 3 MPa and 12.2% ± 1.4%, respectively, which were approximately 1.17 and 1.53 times those of the as-prepared samples, respectively. According to the tensile properties and fracture analysis, the density increase dominated the improvement of the mechanical properties.


2012 ◽  
Vol 549 ◽  
pp. 790-794 ◽  
Author(s):  
Kai Zhang ◽  
Xin Min Zhang ◽  
Wei Jun Liu

The Laser Metal Deposition Shaping (LMDS) process involves injecting metallic powder into a molten pool created by a high power industrial laser. As the laser traverses across the substrate in a layer-by-layer fashion, a fully dense metal is left in its path. A few processing parameters involved with the LMDS include the laser power, traverse speed, powder feeding rate, and gas flow rate, etc, which affect many factors of LMDS technology. Among them, the powder utilization ratio is an important one because it directly determines the build rate and build height per layer. Due to some objective reasons, the powder utilization ratio is far less than 100%. In order to ensure the stability of LMDS technology, it is necessary to investigate the match between powder utilization ratio and build rate and forming efficiency, and grasp the influence rules of processing parameters on powder utilization ratio. Accordingly, the related experiments were performed with the varied laser power, scanning speed and powder feeding rate. The results prove that the powder utilization ratio is a varied value, and affected by the processing parameters. Consequently, the relative ideal parameter match should be chosen in accordance with the specific circumstances during the LMDS technology, thus ensuring the better powder utilization ratio and promoting the forming efficiency and economic benefit.


2010 ◽  
Vol 97-101 ◽  
pp. 3846-3851 ◽  
Author(s):  
Guang Yang ◽  
Wei Jun Liu ◽  
Wei Wang ◽  
Fei Xing ◽  
Feng Jie Tian ◽  
...  

To increase the strength and erosion resistance of Copper Crystallizer, the system based on Laser Metal Deposition (LMD) process was proposed to clad nickel-based alloy on its surface. With the optimal processing parameters ascertained by large numbers of experiments, the crystallizer was clad nickel-based alloy. The morphology and the microstructures of the cladding layers and bonding interface were analyzed by energy dispersive spectrometer and scanning electronic microscopy. The result shows that the bonding interface realizes the metallurgic and tight bonding.


Author(s):  
Yong Deng ◽  
Zhongfa Mao ◽  
Nan Yang ◽  
Xiaodong Niu ◽  
Xiangdong Lu

Although the concept of additive manufacturing has been proposed for several decades, momentum of selective laser melting (SLM) is finally starting to build. In SLM, density and surface roughness, as the important quality indexes of SLMed parts, are dependent on the processing parameters. However, there are few studies on their collaborative optimization in SLM to obtain high relative density and low surface roughness simultaneously in the previous literature. In this work, the response surface method was adopted to study the influences of different processing parameters (laser power, scanning speed and hatch space) on density and surface roughness of 316L stainless steel parts fabricated by SLM. The statistical relationship model between processing parameters and manufacturing quality is established. A multi-objective collaborative optimization strategy considering both density and surface roughness is proposed. The experimental results show that the main effects of processing parameters on the density and surface roughness are similar. It is noted that the effects of the laser power and scanning speed on the above objective quality show highly significant, while hatch space behaves an insignificant impact. Based on the above optimization, 316L stainless steel parts with excellent surface roughness and relative density can be obtained by SLM with optimized processing parameters.


2021 ◽  
Vol 2144 (1) ◽  
pp. 012001
Author(s):  
P S Rodin ◽  
V D Dubrov

Abstract The control of the track shape in laser metal deposition technology by the QCW laser mode has been studied. The different geometric characteristics of the tracks are shown to obtain at the same average laser power, depending on the selected laser power control mode. The difference in the temperature regimes of track formation is shown.


2018 ◽  
Vol 19 (6) ◽  
pp. 591-596
Author(s):  
Andrzej Mazurkiewicz ◽  
Andrzej Poprzeczka

The article presents the results of a study of C45 carbon steel hardfacing using laser metal deposition with Stellit Co-21 powder. The microstructure of the cross-section of samples prepared with different scanning speed and the amount of used powder at constant laser power was observed. Analyzing the cross-sectional areas of the samples, it was found that, at specific production parameters, cracks occur in weld overlay, which should be associated with the amount of heat supplied and discharged, especially at the unheated basis.This may be confirmed by the presence of deposits of weakly branched dendrites in the microstructure, which should be related to the directional heat dissipation process and rapid directional crystallization. It is possible to regulate these phenomena by selecting appropriate processing parameters. The microstructure analysis of cross-sectional areas of samples after hardfacing using LDT technique indicates good metallurgical quality of the deposit with a small heat affected zone of about 660÷760m. The microhardness measurements on the sample cross-sections indicated a wide micohardness distribution ranging from 510HV1 in the weld overlay, about 410HV1 in the heat affected zone, to 270HV1 in the C45 steel base.


Author(s):  
Kamardeen Olajide Abdulrahman ◽  
Esther T. Akinlabi ◽  
Rasheedat M. Mahamood

Three-dimensional printing has evolved into an advanced laser additive manufacturing (AM) process with capacity of directly producing parts through CAD model. AM technology parts are fabricated through layer by layer build-up additive process. AM technology cuts down material wastage, reduces buy-to-fly ratio, fabricates complex parts, and repairs damaged old functional components. Titanium aluminide alloys fall under the group of intermetallic compounds known for high temperature applications and display of superior physical and mechanical properties, which made them most sort after in the aeronautic, energy, and automobile industries. Laser metal deposition is an AM process used in the repair and fabrication of solid components but sometimes associated with thermal induced stresses which sometimes led to cracks in deposited parts. This chapter looks at some AM processes with more emphasis on laser metal deposition technique, effect of LMD processing parameters, and preheating of substrate on the physical, microstructural, and mechanical properties of components produced through AM process.


2011 ◽  
Vol 480-481 ◽  
pp. 644-649
Author(s):  
Kai Zhang ◽  
Xiao Feng Shang ◽  
Wei Jun Liu

The Laser Metal Deposition Shaping (LMDS) is a state-of-the-art technology which correlates the Rapid Prototyping and Manufacturing (RP&M) and laser processing. During this process, a certain alloy is fused onto the surface of a substrate. Laser deposition devices, namely powder feeder, CNC worktable, and laser shutter, are integrated to automatically make any cladding profile possible. Material is deposited by scanning the laser across a surface while injecting metallic powders into the molten pool at the laser focus. The metal part is then fabricated layer by layer. The LMDS system consists of four primary components: energy supply module, motion control module, powder delivery module, and computer control module. These modules of LMDS system individually perform the specified functions, but coordinate with each other. One of them, the control module plays an important role in causing the LMDS system automatic and intelligent. The control module can be divided into hardware and software components. The hardware structure mainly includes industrial computer, motors, and motion control card, which build the overall framework, and are driven by software structure. The software structure, namely the system application program with GUI, can instruct every module of LMDS system to finish the motion cooperatively adjust the processing parameters freely, and fulfill the LMDS technology automatically and intelligently. The hardware and software structures work in harmony with each other, thus flexibly controlling the LMDS system.


2021 ◽  
Author(s):  
Norberto Jimenez Mena ◽  
Philippe Dufour ◽  
Nicolas Nutal ◽  
Cedric Georges ◽  
Ana Brandão

In this study, we focus on additive manufacturing using Laser Metal Deposition (LMD) to produce a large space aluminum component that is expensive to manufacture with conventional methods and requests a long lead time. Two main objectives are aimed at: the setup of the process with the determination of process parameters that lead to healthy parts and the demonstration that the component size and geometry is largely compatible with LMD. Two materials are considered for this component. AlSi10Mg and Scalmalloy®. Processing parameters have been optimized to obtain a density on both materials over 99.5%. The final material is chosen with regard to the mechanical performance. Scalmalloy provides both better strength and ductility and is chosen to print a demonstrator. The demonstrator printed in this study is a section of a large (1 m diameter) ring-shaped component that has been topologically optimized. Some modifications are made on the original design in order to make it compatible with LMD printing. The printing strategy is then established. The results of the (non-) destructive testing reveal that the demonstrator is healthy and the mechanical properties are as expected.


Sign in / Sign up

Export Citation Format

Share Document