scholarly journals Silver Nanowire Ink for Flexible Circuit on Textiles

Micromachines ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 42 ◽  
Author(s):  
Dexi Du ◽  
Xing Yang ◽  
Yonglan Yang ◽  
Yuzhen Zhao ◽  
Yuehui Wang

Low cost electronics implemented in textiles could pave the way to a fully new generation of smart products in the fields of healthcare, sport, fashion, and safety. Although many methods have found their way into the market, many problems still need to be solved and much progress has to be made to enable the commercial exploitation of such products. In this paper, silver nanowires of 60–100 nm in diameter and 8–15 μm in length were achieved by the polyol solvothermal method, and aqueous silver nanowire conductive inks were prepared with the synthesized silver nanowires as the conductive phase, in the presence of polyaniline, guar, and hydrochloric acid. The conductive inks were printed on cotton fabric substrate by screen printing process. The effects of the amount of silver nanowires, layers of coating, and treatment temperature on the microstructure and electrical properties of samples were investigated by scanning electron microscopy and the four-point probe method. The results show that the conductivity and densification of the samples increased with increased amount of silver nanowires, layers of coating, and treatment temperature. The heat treatment helped to improve densification of the silver nanowires and conductivity of the sample. The resistance of the samples increased after bending due to loosening of the overlap between the silver nanowires.

Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 468 ◽  
Author(s):  
Xin He ◽  
Gengzhe Shen ◽  
Ruibin Xu ◽  
Weijia Yang ◽  
Chi Zhang ◽  
...  

Transparent conductive films with hexagonal and square patterns were fabricated on poly(ethylene terephthalate) (PET) substrates by screen printing technology utilizing a poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) and silver nanowire (Ag NWs) composite ink. The printing parameters—mesh number, printing layer, mass ratio of PEDOT:PSS to Ag NWs and pattern shape—have a significant influence on the photoelectric properties of the composite films. The screen mesh with a mesh number of 200 possesses a suitable mesh size of 74 µm for printing clear and integrated grids with high transparency. With an increase in the printing layer and a decrease in the mass ratio of PEDOT:PSS to Ag NWs, the transmittance and resistance of the printed grids both decreased. When the printing layer is 1, the transmittance and resistance are 85.6% and 2.23 kΩ for the hexagonal grid and 77.3% and 8.78 kΩ for the square grid, indicating that the more compact arrangement of square grids reduces the transmittance, and the greater number of connections of the square grid increases the resistance. Therefore, it is believed that improved photoelectric properties of transparent electrodes could be obtained by designing a printing pattern with optimized printing parameters. Additionally, the Ag NWs/PEDOT:PSS composite films with hexagonal and square patterns exhibit high transparency and good uniformity, suggesting promising applications in large-area and uniform heaters.


2020 ◽  
Author(s):  
Joana P. Neto ◽  
Adriana Costa ◽  
Joana Vaz Pinto ◽  
André Marques–Smith ◽  
Júlio Costa ◽  
...  

AbstractThis work explored hybrid films of silver nanowires (AgNWs) with indium-doped zinc oxide (IZO) for developing high-performance and low-cost electrocorticography (ECoG) electrodes.The hybrid films achieved a sheet resistance of 6 Ω/sq while maintaining a transparency of ≈60% at 550 nm. Electrodes with 500 μm diameter were fabricated with these films and reached an impedance of 20 kΩ at 1 kHz and a charge storage capacity of 3.2 mC/cm2, a 2× and 320× improvement over IZO electrodes, respectively. Characterization of light-induced artifacts was performed showing that small light intensities (<14 mW/mm2) elicit electrical potential variation in the magnitude order of baseline noise. The validation of electrodes in vivo was achieved by recording electrical neural activity from the surface of rat cortex under anaesthesia. Moreover, the presence of the films did not cause obstruction of light during fluorescence microscopy.The presented film and electrode characterization studies highlighted the capabilities of this hybrid structure to fabricate transparent and flexible electrodes that are able to combine the superior temporal resolution of extracellular electrophysiology with the spatial resolution offered by optical imaging.


Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1027
Author(s):  
Jianjun Yang ◽  
Wei Zeng ◽  
Yaxin Li ◽  
Zichuan Yi ◽  
Guofu Zhou

Flexible transparent conductive thin films (TCFs) prepared from Silver nanowires (AgNWs) have attractive features of low cost, flexibility, and solution-processed, but the usual manufacturing methods could still be hard to be scaled up. In addition, large-scale/large-area fabrication process with industrialized potential is strongly needed. In this paper, the flexible TCFs with high stability are obtained via using screen printing method to print the AgNWs inks on a flexible and transparent substrate. The micro-structure of the AgNWs patterns is investigated by optical microscope and scanning electron microscope. Furthermore, the sheet resistance, light transmittance, and film thickness of the AgNWs patterns prepared under different conditions are characterized to explore the influence of different factors on its optical and electrical properties.


2019 ◽  
Vol 7 (4) ◽  
pp. 809-818 ◽  
Author(s):  
Bin Tian ◽  
Weijing Yao ◽  
Pan Zeng ◽  
Xuan Li ◽  
Huanjun Wang ◽  
...  

Stretchable and wearable strain sensors based on Ag nanodendrites with high stretchability and sensitivity are fabricated by directly screen-printing technology.


Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 865 ◽  
Author(s):  
Xiaoli Wu ◽  
Zhimin Zhou ◽  
Yuehui Wang ◽  
Jingze Li

Nowadays, flexible transparent conductive film (FTCF) is one of the important components of many flexible electronic devices. Due to comprehensive performances on optoelectronics, FTCF based on silver nanowires (AgNWs) networks have received great attention and are expected to be a new generation of transparent conductive film materials. Due to its simple process, printed electronic technology is now an important technology for the rapid production of low-cost and high-quality flexible electronic devices. AgNWs-based FTCF fabricated by using printed electronic technology is considered to be the most promising process. Here, the preparation and performance of AgNW ink are introduced. The current printing technologies are described, including gravure printing, screen printing and inkjet printing. In addition, the latest methods to improve the conductivity, adhesion, and stability of AgNWs-based FTCF are introduced. Finally, the applications of AgNWs-based FTCF in solar cells, transparent film heaters, optoelectronic devices, touch panel, and sensors are introduced in detail. Therefore, combining various printing technologies with AgNWs ink may provide more opportunities for the development of flexible electronic devices in the future.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
June Sik Hwang ◽  
Jong-Eun Park ◽  
Gun Woo Kim ◽  
Hyeono Nam ◽  
Sangseok Yu ◽  
...  

AbstractAs silver nanowires (Ag NWs) are usually manufactured by chemical synthesis, a patterning process is needed to use them as functional devices. Pulsed laser ablation is a promising Ag NW patterning process because it is a simple and inexpensive procedure. However, this process has a disadvantage in that target materials are wasted owing to the subtractive nature of the process involving the removal of unnecessary materials, and large quantities of raw materials are required. In this study, we report a minimum-waste laser patterning process utilizing silver nanoparticle (Ag NP) debris obtained through laser ablation of Ag NWs in liquid media. Since the generated Ag NPs can be used for several applications, wastage of Ag NWs, which is inevitable in conventional laser patterning processes, is dramatically reduced. In addition, electrophoretic deposition of the recycled Ag NPs onto non-ablated Ag NWs allows easy fabrication of junction-enhanced Ag NWs from the deposited Ag NPs. The unique advantage of this method lies in using recycled Ag NPs as building materials, eliminating the additional cost of junction welding Ag NWs. These fabricated Ag NW substrates could be utilized as transparent heaters and stretchable TCEs, thereby validating the effectiveness of the proposed process.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2219
Author(s):  
Xiaopeng Li ◽  
Jiayue Zhou ◽  
Dejun Yan ◽  
Yong Peng ◽  
Yong Wang ◽  
...  

In this paper, silver nanowires (AgNWs) with a diameter of 40 nm and a length of 45 μm were dispersed into an ethanol solution to prepare AgNW solutions with concentrations of 1, 2, and 3 mg/mL, respectively. The AgNW solutions were then deposited on a glass substrate using spin-coating at 1000, 2000, and 3000 rpm for 45 s, respectively, to prepare transparent electrodes. The results showed that the distribution of AgNWs on the substrate increased in density with the increase in the AgNW solution concentration and the decrease in spin speed. The effect of concentration on the distribution of AgNWs was greater than that of the spin speed. The transmittance of each electrode was between 84.19% and 88.12% at 550 nm, the average sheet resistance was between 20.09 and 358.11 Ω/sq, the highest figure of merit (FoM) was 104.42, and the lowest haze value was 1.48%. The electrode prepared at 1000 rpm with a concentration of 2 mg/mL and that prepared at 3000 rpm with a concentration of 3 mg/mL were very similar in terms of the average sheet resistance, transmittance at 550 nm, FoM, and haze value; thus, these two electrodes could be considered equivalent. The haze value of the electrode was positively correlated with the spin speed at low concentration, but that relationship became inverse as the concentration rose. For the AgNWs used in this experiment with an aspect ratio of 1125, the concentration of the AgNW solution should reach at least 2 mg/mL to ensure that the FoM of the electrode is greater than 35.


RSC Advances ◽  
2021 ◽  
Vol 11 (25) ◽  
pp. 15369-15379
Author(s):  
Wandi Song ◽  
Jianghua Zhao ◽  
Xiuhong Xie ◽  
Wang Liu ◽  
Shuxia Liu ◽  
...  

1. The C-loaded BiOBr was synthesized via a one-step solvothermal method. 2. C/BiOBr showed an obvious synergistic effect of adsorption and photocatalysis on the degradation of ciprofloxacin.


Sign in / Sign up

Export Citation Format

Share Document