scholarly journals Fabrication and Characterization of Micro-Nano Electrodes for Implantable BCI

Micromachines ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 242 ◽  
Author(s):  
Xi ◽  
Ji ◽  
Guo ◽  
Li ◽  
Liu

Signal recording and stimulation with high spatial and temporal resolution are of increasing interest with the development of implantable brain-computer interfaces (BCIs). However, implantable BCI technology still faces challenges in the biocompatibility and long-term stability of devices after implantation. Due to the cone structure, needle electrodes have advantages in the biocompatibility and stability as nerve recording electrodes. This paper develops the fabrication of Ag needle micro/nano electrodes with a laser-assisted pulling method and modifies the electrode surface by electrochemical oxidation. A significant impedance reduction of the modified Ag/AgCl electrodes compared to the Ag electrodes is demonstrated by the electrochemical impedance spectrum (EIS). Furthermore, the stability of modified Ag/AgCl electrodes is confirmed by cyclic voltammogram (CV) scanning. These findings suggest that these micro/nano electrodes have a great application prospect in neural interfaces.

2020 ◽  
Vol 117 (31) ◽  
pp. 18194-18205 ◽  
Author(s):  
Daniel Tamayo ◽  
Miles Cranmer ◽  
Samuel Hadden ◽  
Hanno Rein ◽  
Peter Battaglia ◽  
...  

We combine analytical understanding of resonant dynamics in two-planet systems with machine-learning techniques to train a model capable of robustly classifying stability in compact multiplanet systems over long timescales of109orbits. Our Stability of Planetary Orbital Configurations Klassifier (SPOCK) predicts stability using physically motivated summary statistics measured in integrations of the first104orbits, thus achieving speed-ups of up to105over full simulations. This computationally opens up the stability-constrained characterization of multiplanet systems. Our model, trained on ∼100,000 three-planet systems sampled at discrete resonances, generalizes both to a sample spanning a continuous period-ratio range, as well as to a large five-planet sample with qualitatively different configurations to our training dataset. Our approach significantly outperforms previous methods based on systems’ angular momentum deficit, chaos indicators, and parametrized fits to numerical integrations. We use SPOCK to constrain the free eccentricities between the inner and outer pairs of planets in the Kepler-431 system of three approximately Earth-sized planets to both be below 0.05. Our stability analysis provides significantly stronger eccentricity constraints than currently achievable through either radial velocity or transit-duration measurements for small planets and within a factor of a few of systems that exhibit transit-timing variations (TTVs). Given that current exoplanet-detection strategies now rarely allow for strong TTV constraints [S. Hadden, T. Barclay, M. J. Payne, M. J. Holman,Astrophys. J.158, 146 (2019)], SPOCK enables a powerful complementary method for precisely characterizing compact multiplanet systems. We publicly release SPOCK for community use.


2020 ◽  
Vol 24 (11-12) ◽  
pp. 2883-2889 ◽  
Author(s):  
Tamás Pajkossy ◽  
Gábor Mészáros

Abstract With the purpose of fast characterization of electrode reactions, a dynamic electrochemical impedance spectrum (dEIS) measurement system has been assembled which permits the continuous collection of audio-frequency impedance spectra while performing cyclic voltammetry measurements with the usual scan rates of up to 200 mV/s. The performance of this system was tested by analyzing the CV curves and impedance spectra taken simultaneously in ferro-/ferricyanide containing aqueous solutions yielding an experimental demonstration of the connection of the semi-integrated reversible voltammograms and the Warburg coefficients.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5794
Author(s):  
Sumayya M. Abdulrahim ◽  
Zubair Ahmad ◽  
Jolly Bhadra ◽  
Noora Jabor Al-Thani

Despite the remarkable progress in perovskite solar cells (PSCs), their instability and rapid degradation over time still restrict their commercialization. A 2D capping layer has been proved to overcome the stability issues; however, an in-depth understanding of the complex degradation processes over a prolonged time at PSC interfaces is crucial for improving their stability. In the current work, we investigated the stability of a triple cation 3D ([(FA0.83MA0.17)Cs0.05]Pb(I0.83Br0.17)3) and 2D/3D PSC fabricated by a layer-by-layer deposition technique (PEAI-based 2D layer over triple cation 3D perovskite) using a state-of-art characterization technique: electrochemical impedance spectroscopy (EIS). A long-term stability test over 24 months was performed on the 3D and 2D/3D PSCs with an initial PCE of 18.87% and 20.21%, respectively, to suggest a more practical scenario. The current-voltage (J-V) and EIS results showed degradation in both the solar cell types; however, a slower degradation rate was observed in 2D/3D PSCs. Finally, the quantitative analysis of the key EIS parameters affected by the degradation in 3D and 2D/3D PSCs were discussed.


1979 ◽  
Vol 42 (04) ◽  
pp. 1135-1140 ◽  
Author(s):  
G I C Ingram

SummaryThe International Reference Preparation of human brain thromboplastin coded 67/40 has been thought to show evidence of instability. The evidence is discussed and is not thought to be strong; but it is suggested that it would be wise to replace 67/40 with a new preparation of human brain, both for this reason and because 67/40 is in a form (like Thrombotest) in which few workers seem to use human brain. A �plain� preparation would be more appropriate; and a freeze-dried sample of BCT is recommended as the successor preparation. The opportunity should be taken also to replace the corresponding ox and rabbit preparations. In the collaborative study which would be required it would then be desirable to test in parallel the three old and the three new preparations. The relative sensitivities of the old preparations could be compared with those found in earlier studies to obtain further evidence on the stability of 67/40; if stability were confirmed, the new preparations should be calibrated against it, but if not, the new human material should receive a calibration constant of 1.0 and the new ox and rabbit materials calibrated against that.The types of evidence available for monitoring the long-term stability of a thromboplastin are discussed.


2016 ◽  
Vol 7 (36) ◽  
pp. 5664-5670 ◽  
Author(s):  
Michał Szuwarzyński ◽  
Karol Wolski ◽  
Szczepan Zapotoczny

Formation and characterization of polyacetylene-based brushes that exhibit exceptional long term stability in air is presented here.


2021 ◽  
Vol 15 (1) ◽  
pp. 2
Author(s):  
Cristina Martín-Sabroso ◽  
Mario Alonso-González ◽  
Ana Fernández-Carballido ◽  
Juan Aparicio-Blanco ◽  
Damián Córdoba-Díaz ◽  
...  

Accumulation of cystine crystals in the cornea of patients suffering from cystinosis is considered pathognomonic and can lead to severe ocular complications. Cysteamine eye drop compounded formulations, commonly prepared by hospital pharmacy services, are meant to diminish the build-up of corneal cystine crystals. The objective of this work was to analyze whether the shelf life proposed for six formulations prepared following different protocols used in hospital pharmacies is adequate to guarantee the quality and efficacy of cysteamine eye drops. The long-term and in-use stabilities of these preparations were studied using different parameters: content of cysteamine and its main degradation product cystamine; appearance, color and odor; pH and viscosity; and microbiological analysis. The results obtained show that degradation of cysteamine was between 20% and 50% after one month of storage in the long-term stability study and between 35% and 60% in the in-use study. These data confirm that cysteamine is a very unstable molecule in aqueous solution, the presence of oxygen being the main degradation factor. Saturation with nitrogen gas of the solutions offers a means of reducing cysteamine degradation. Overall, all the formulae studied presented high instability at the end of their shelf life, suggesting that their clinical efficacy might be dramatically compromised.


2013 ◽  
Vol 23 (11) ◽  
pp. 2129-2154 ◽  
Author(s):  
HÉLÈNE BARUCQ ◽  
JULIEN DIAZ ◽  
VÉRONIQUE DUPRAT

This work deals with the stability analysis of a one-parameter family of Absorbing Boundary Conditions (ABC) that have been derived for the acoustic wave equation. We tackle the problem of long-term stability of the wave field both at the continuous and the numerical levels. We first define a function of energy and show that it is decreasing in time. Its discrete form is also decreasing under a Courant–Friedrichs–Lewy (CFL) condition that does not depend on the ABC. Moreover, the decay rate of the continuous energy can be determined: it is exponential if the computational domain is star-shaped and this property can be illustrated numerically.


2021 ◽  
pp. 1-27
Author(s):  
Yichen Bao ◽  
Kai Liu ◽  
Quan Zheng ◽  
Lulu Yao ◽  
Yufu Xu

Abstract Pickering emulsion is a new type of stable emulsion made by ultra-fine solid particles instead of traditional surfactants as stabilizers, which has received widespread attention in recent years. The preparation methods of stator-rotor homogenization, high-pressure homogenization, and ultrasonic emulsification were compared with others in this work. The main factors affecting the stability of Pickering emulsion are the surface humidity of the solid particles, the polarity of the oil phase, and the oil-water ratio. These factors could affect the nature of the solid particles, the preparation process of Pickering emulsion and the external environment. Consequently, the long-term stability of Pickering emulsion is still a challenge. The tribological investigations of Pickering emulsion were summarized, and the multifunctional Pickering emulsion shows superior prospects for tribological applications. Moreover, the latest development of Pickering emulsion offers a new strategy for smart lubrication in the near future.


2012 ◽  
Vol 2012 (CICMT) ◽  
pp. 000371-000376 ◽  
Author(s):  
Marina Santo Zarnik ◽  
Darko Belavic

This paper discusses the stability of a piezoresistive, LTCC-based, pressure sensor that was designed for measurements in a low-pressure range below 100 mbar. The intrinsic stability of the sensor's offset was evaluated at a constant ambient temperature and different conditions regarding the atmospheric humidity. The sensors were also subjected to functional fatigue tests, which included a full-scale and an overload pressure cycling. The results of the fatigue testing revealed the vulnerability of the sensor's structure from the point of view of the long-term stability and the life-cycle. Nevertheless, the stability of the key characteristics of the prototype sensors was found to be satisfactory for accurate measurements in the low-pressure ranges.


1995 ◽  
Vol 377 ◽  
Author(s):  
Mohan K. Bhan

ABSTRACTWe have systematically investigated the effects of addition of sub-ppm levels of boron on the stability of a-Si:H films and p-i-n devices, deposited by PE-CVD technique. The films thus produced with appropriate amounts of boron, show a significant improvement in stability, when soaked under both AM 1.5 (short-term) as well as 10×sun (long-term) illumination conditions. The opto-electronic properties of the films are quite respectable It is concluded that boron compensates the native impurities by forming donor-acceptor pairs, which reduces the “fast” defects and hence the initial degradation of the films. It is also speculated that boron may also be improving the short-term stability, by reducing the recombination of light generated electrons and holes, by converting D° into D+ states. The long-term stability appears to get affected by hydrogen dilution which seems to reduce the amount of “slow” defects. As a result of B doping of i-layer, the initial conversion efficiency of the devices decreases. It is presumed that our devices may contain an enhanced level of boron impurity, than expected, making them as worse material and to degrade less.


Sign in / Sign up

Export Citation Format

Share Document