scholarly journals T-Channel Field Effect Transistor with Three Input Terminals (Ti-TcFET)

Micromachines ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 64
Author(s):  
Zeqi Chen ◽  
Jianping Hu ◽  
Hao Ye ◽  
Zhufei Chu

In this paper, a novel T-channel field effect transistor with three input terminals (Ti-TcFET) is proposed. The channel of a Ti-TcFET consists of horizontal and vertical sections. The top gate is above the horizontal channel, while the front gate and back gate are on either side of the vertical channel. The T-shaped channel structure increases the coupling area between the top gate and the front and back gates, which improves the ability of the gate electrodes to control the channel. What’s more, it makes the top gate have almost the same control ability for the channel as the front gate and the back gate. This unique structure design brings a unique function in that the device is turned on only when two or three inputs are activated. Silvaco technology computer-aided design (TCAD) simulations are used to verify the current characteristics of the proposed Ti-TcFET. The current characteristics of the device are theoretically analyzed, and the results show that the theoretical analysis agrees with the TCAD simulation results. The proposed Ti-TcFET devices with three input terminals can be used to simplify the complex circuits in a compact style with reduced counts of transistors compared with the traditional complementary metal–oxide–semiconductor/ fin field-effect transistors (CMOS/FinFETs) with a single input terminal and thus provides a new idea for future circuit designs.

Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 227 ◽  
Author(s):  
Young Kim ◽  
Jin Lee ◽  
Geon Kim ◽  
Taesik Park ◽  
HuiJung Kim ◽  
...  

In this paper, we extensively analyzed the drain-induced barrier lowering (DIBL) and leakage current characteristics of the proposed partial isolation field-effect transistor (PiFET) structure. We then compared the PiFET with the conventional planar metal-oxide semiconductor field-effect transistor (MOSFET) and silicon on insulator (SOI) structures, even though they have the same doping profile. Two major features of the PiFET are potential condensation and potential modulation by a buried insulator. The potential modulation near the drain region can control the electric field in the overlapped region of the drain and gate, because it causes a high gate-fringing field. Therefore, we suggest guidelines with respect to the optimal PiFET structure.


2020 ◽  
Vol 29 (11) ◽  
pp. 2050181
Author(s):  
Cross T. Asha Wise ◽  
G. R. Suresh ◽  
M. Palanivelen ◽  
S. Saraswathi

Mounting electronics circuits on a plastic flexible substrate are pertinent for biosensing applications due to their resilient nature, minimal processing conditions, lightweight and low cost. Organic Field-Effect Transistors (OFET)-based amplifier for flexible biosensors have been proposed in this paper. To design flexible biosensing circuits, Metal Oxide Semiconductor Field-Effect Transistor (MOSFET) with Polycyclic Hydrocarbon is a suitable choice. It is a big challenge to build an organic circuit using graphene electrode due to its poor performance of [Formula: see text]-type OFET, therefore it is advisable to use Pentacene as [Formula: see text]- and [Formula: see text]-type Organic semiconductors. Pentacene being one among the foremost totally investigated conjugated organic molecules with a high application potential because the hole mobility in OFETs goes up to 0.2[Formula: see text]cm2/(Vs), which exceeds that of amorphous silicon. In biosignal process, the first and most important step is to amplify the biosignal for further processing. Operational Transconductance Amplifier (OTA) plays an essential role in biological signal measuring instruments like EEG, ECG, EMG modules which measure the heart, muscle and brain activities. The OTA designed using this OFET is adaptable for flexible sensor circuits and also it derives the transconductance of 67 which is similar to silicon OTA. The amplifier designed here gives unit gain of 42[Formula: see text]dB with a frequency of 195[Formula: see text]Hz which is suitable for low-frequency biosignal processing applications.


2022 ◽  
Author(s):  
Eunwoo Baek ◽  
Jaemin Son ◽  
Kyoungah Cho ◽  
Sangsig Kim

Abstract In this paper, we propose a logic-in-memory (LIM) inverter comprising a silicon nanowire (SiNW) n-channel feedback field-effect transistor (n-FBFET) and a SiNW p-channel metal oxide semiconductor field-effect transistor (p-MOSFET). Further, we investigated the hybrid logic and memory operations of the inverter using mixed-mode technology computer-aided design simulations. Our LIM inverter exhibited a high voltage gain of 296.8 (V/V) when transitioning from logic ‘1’ to ‘0’ and 7.9 (V/V) when transitioning from logic ‘0’ to ‘1’, while holding calculated logic at zero input voltage. The energy band diagrams of the n-FBFET structure demonstrated that the holding operation of the inverter was implemented by controlling the positive feedback loop. Moreover, the output logic can remain constant without any supply voltage, resulting in zero static power consumption.


2006 ◽  
Vol 45 (4B) ◽  
pp. 3040-3044
Author(s):  
Yuske Yamada ◽  
Hyuckjae Oh ◽  
Takeshi Sakaguchi ◽  
Takafumi Fukushima ◽  
Mitsumasa Koyanagi

Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 275 ◽  
Author(s):  
Faraz Najam ◽  
Yun Yu

The L-shaped tunneling field-effect-transistor (LTFET) has been recently introduced to overcome the thermal subthreshold limit of conventional metal-oxide-semiconductor field-effect-transistors (MOSFET). In this work, the shortcomings of the LTFET was investigated. It was found that the corner effect present in the LTFET effectively degrades its subthreshold slope. To avoid the corner effect, a new type of device with dual material gates is presented. The new device, termed the dual-gate (DG) LTEFT (DG-LTFET), avoids the corner effect and results in a significantly improved subthreshold slope of less than 10 mV/dec, and an improved ON/OFF current ratio over the LTFET. The DG-LTFET was evaluated for different device parameters and bench-marked against the LTFET. This work presents the optimum configuration of the DG-LTFET in terms of device dimensions and doping levels to determine the best subthreshold, ON current, and ambipolar performance.


Sign in / Sign up

Export Citation Format

Share Document