scholarly journals A Front-Side Microfabricated Thermoresistive Gas Flow Sensor for High-Performance, Low-Cost and High-Yield Volume Production

Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 205
Author(s):  
Dan Xue ◽  
Jiachou Wang ◽  
Xinxin Li

In this paper, we present a novel thermoresistive gas flow sensor with a high-yield and low-cost volume production by using front-side microfabricated technology. To best improve the thermal resistance, a micro-air-trench between the heater and the thermistors was opened to minimize the heat loss from the heater to the silicon substrate. Two types of gas flow sensors were designed with the optimal thermal-insulation configuration and fabricated by a single-wafer-based single-side process in (111) wafers, where the type A sensor has two thermistors while the type B sensor has four. Chip dimensions of both sensors are as small as 0.7 mm × 0.7 mm and the sensors achieve a short response time of 1.5 ms. Furthermore, without using any amplification, the normalized sensitivity of type A and type B sensors is 1.9 mV/(SLM)/mW and 3.9 mV/(SLM)/mW for nitrogen gas flow and the minimum detectable flow rate is estimated at about 0.53 and 0.26 standard cubic centimeter per minute (sccm), respectively.

1987 ◽  
Vol 65 (8) ◽  
pp. 892-896 ◽  
Author(s):  
R. E. Thomas ◽  
C. E. Norman ◽  
S. Varma ◽  
G. Schwartz ◽  
E. M. Absi

A low-cost, high-yield technology for producing single-crystal silicon solar cells at high volumes, and suitable for export to developing countries, is described. The process begins with 100 mm diameter as-sawn single-crystal p-type wafers with one primary flat. Processing steps include etching and surface texturization, gaseous-source diffusion, plasma etching, and contacting via screen printing. The necessary adaptations of such standard processes as diffusion and plasma etching to solar-cell production are detailed. New process developments include a high-throughput surface-texturization technique, and automatic printing and firing of cell contacts.The technology, coupled with automated equipment developed specifically for the purpose, results in solar cells with an average efficiency greater than 12%, a yield exceeding 95%, a tight statistical spread on parameters, and a wide tolerance to starting substrates (including the first 100 mm diameter wafers made in Canada). It is shown that with minor modifications, the present single shift 500 kWp (kilowatt peak) per year capacity technology can be readily expanded to 1 MWp per year, adapted to square and polycrystalline substrates, and efficiencies increased above 13%.


2013 ◽  
Vol 634-638 ◽  
pp. 2742-2745 ◽  
Author(s):  
Jeong Eun Kim ◽  
Wan Shin Park ◽  
Nam Yong Eom ◽  
Do Gyeum Kim ◽  
Jea Myoung Noh

This study undertook the research of size effect on compressive strength and modulus of elasticity, respectively. The parameters of this study are curing age and fly ash replacement ratio to investigate size effect of Type A (100mm x 200mm) and Type B (150mm x 300mm) specimens in high performance concrete. On this study, high performance concrete was fabricated with different FA contents of 10%, 20% and 30%. The measurements were performed on days 28 and 91.


Nanophotonics ◽  
2017 ◽  
Vol 7 (2) ◽  
pp. 371-391 ◽  
Author(s):  
Yan-Gang Bi ◽  
Jing Feng ◽  
Jin-Hai Ji ◽  
Fang-Shun Yi ◽  
Yun-Fei Li ◽  
...  

AbstractLightweight and low-cost organic photovoltaics (OPVs) hold great promise as renewable energy sources. The most critical challenge in developing high-performance OPVs is the incomplete photon absorption due to the low diffusion length of the carrier in organic semiconductors. To date, various attempts have been carried out to improve light absorption in thin photoactive layer based on optical engineering strategies. Nanostructure-induced light harvesting in OPVs offers an attractive solution to realize high-performance OPVs, via the effects of antireflection, plasmonic scattering, surface plasmon polarization, localized surface plasmon resonance and optical cavity. In this review article, we summarize recent advances in nanostructure-induced light harvesting in OPVs and discuss various light-trapping strategies by incorporating nanostructures in OPVs and the fabrication processing of the micro-patterns with high resolution, large area, high yield and low cost.


1998 ◽  
Vol 514 ◽  
Author(s):  
Simon Yang

ABSTRACTInterconnect delay is believed to have a dominating impact on the speed of large logic circuits (such as micro-processors) when the Si technology is scaled into sub- 0.25um generations. In this paper, we analyzed interconnect scaling issues based on leading micro-processor trend data, simple RC delay model and the “Rents' rule”. It was concluded that, in order to not limit the speed of large logic circuits, “fat” metal wires need to be used for upper metal layers, which will lead to a rapid increase of required number of metal layers (>10) for sub-0.25um technology generations. Introducing Cu and low ε interconnect system can delay this rapid increase by ∼1 generation. Creating multiple clock frequencies in large logic chips and reducing the size of high frequency islands appears effective in containing the interconnection delay problem. Therefore, the proposed interconnection scaling/development strategy is to introduce Cu and low ε dielectric into manufacturing in next 1∼3 generation (0.25um∼0.13um), develop low cost and high yield interconnect system to enable ∼10 interconnect layers, and improve circuit design methodology to reduce high frequency island size.


2012 ◽  
Vol 162 ◽  
pp. 214-223 ◽  
Author(s):  
Mircea Neagoe ◽  
Maria M. Vatasescu ◽  
Radu G. Saulescu ◽  
Nora Creanga

The paper presents new mechatronic systems used to perform the diurnal orientation of photovoltaic (PV) platforms, aiming to achieve high angular strokes and also low cost, high precision, constructive simplicity and relative low pressure angles. Starting from the disadvantages of the existing tracking mechanism identified in the literature (patents, scientific articles, market documentation, etc.), new high performance linkages and gear mechanisms driven by linear actuators are proposed in the paper. Hence, four new tracking mechanisms, achieving high angular strokes (over 180o), are described: a) quadrilateral type, b) rhombus type, c) slider-crank type, and d) linkage with gears type. These mechanisms are designed especially for concentrating PV systems, which require high orientation precision on the entire angular stroke.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1554
Author(s):  
Na Zhou ◽  
Xuefeng Ding ◽  
Hongbo Li ◽  
Yue Ni ◽  
Yonglong Pu ◽  
...  

A thermopile detector with their thermocouples distributed in micro-bridges is designed and investigated in this work. The thermopile detector consists of 16 pairs of n-poly-Si/p-poly-Si thermocouples, which are fabricated using a low-cost, high-throughput CMOS process. The micro-bridges are realized by forming micro trenches at the front side first and then releasing the silicon substrate at the back side. Compared with a thermopile device using a continuous membrane, the micro-bridge-based one can achieve an improvement of the output voltage by 13.8% due to a higher temperature difference between the hot and cold junctions as there is a decrease in thermal conduction loss in the partially hollowed structure. This technique provides an effective way for developing high-performance thermopile detectors and other thermal devices.


Sign in / Sign up

Export Citation Format

Share Document