scholarly journals Composites, Fabrication and Application of Polyvinylidene Fluoride for Flexible Electromechanical Devices: A Review

Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1076
Author(s):  
Shuaibing Guo ◽  
Xuexin Duan ◽  
Mengying Xie ◽  
Kean Chin Aw ◽  
Qiannan Xue

The technological development of piezoelectric materials is crucial for developing wearable and flexible electromechanical devices. There are many inorganic materials with piezoelectric effects, such as piezoelectric ceramics, aluminum nitride and zinc oxide. They all have very high piezoelectric coefficients and large piezoelectric response ranges. The characteristics of high hardness and low tenacity make inorganic piezoelectric materials unsuitable for flexible devices that require frequent bending. Polyvinylidene fluoride (PVDF) and its derivatives are the most popular materials used in flexible electromechanical devices in recent years and have high flexibility, high sensitivity, high ductility and a certain piezoelectric coefficient. Owing to increasing the piezoelectric coefficient of PVDF, researchers are committed to optimizing PVDF materials and enhancing their polarity by a series of means to further improve their mechanical–electrical conversion efficiency. This paper reviews the latest PVDF-related optimization-based materials, related processing and polarization methods and the applications of these materials in, e.g., wearable functional devices, chemical sensors, biosensors and flexible actuator devices for flexible micro-electromechanical devices. We also discuss the challenges of wearable devices based on flexible piezoelectric polymer, considering where further practical applications could be.

Author(s):  
Shuaibing Guo ◽  
Xuexin Duan ◽  
Mengying Xie ◽  
Kean Chin Aw ◽  
Qiannan Xue

The technological development of piezoelectric materials is crucial for developing wearable and flexible electromechanical devices. There are many inorganic materials with piezoelectric effects, such as piezoelectric ceramics, aluminum nitride, and zinc oxide. They all have very high piezoelectric coefficients and large piezoelectric response ranges. The characteristics of high hardness and low tenacity make inorganic piezoelectric materials unsuitable for flexible devices that require frequent bending. Polyvinylidene fluoride (PVDF) and its derivatives are the most popular materials used in flexible electromechanical devices in recent years and have high flexibility, high sensitivity, high ductility, and a certain piezoelectric coefficient. Owing to increasing the piezoelectric coefficient of PVDF, researchers are committed to optimizing PVDF materials and enhancing their polarity by a series of means to further improve their mechanical–electrical conversion efficiency. This paper reviews the latest PVDF-related optimization materials, related processing and polarization methods, and the applications of these materials such as those in wearable functional devices, chemical sensors, biosensors, and flexible actuator devices for flexible micro-electromechanical devices. We also discuss the challenges of wearable devices based on flexible piezoelectric polymer, consider where further practical applications could be.


2017 ◽  
Vol 57 (2) ◽  
Author(s):  
Šarūnas Svirskas ◽  
Jaroslavas Belovickis ◽  
Daumantas Šemeliovas ◽  
Pedro Martins ◽  
Senentxu Lanceros-Méndez ◽  
...  

CoFe2O4 nanoparticles embedded in polyvinylidene fluoride–trifluoroethylene (P(VDF–TrFE)) matrix show suit­able properties for practical applications as piezoelectric and magnetoelectric transducers. The knowledge about the dielectric and electromechanical responses of the multiferroic films in a broad frequency and temperature range is essential for applicability. The purpose of this work is to investigate the dielectric, ferroelectric and piezoelectric properties of multiferroic composites based on P(VDF–TrFE) as a host matrix and CoFe2O4 as a magnetic filler. Free-standing films with a different concentration of the filler were investigated. The polarization switching was demonstrated for all the compositions. The polarization displacement hysteresis was achieved at different temperatures. The piezoelectric coefficient d33 is not affected by different concentration of ferrite. On the other hand, the composition with the largest weight % of CoFe2O4 shows higher coercive fields which is not favourable for applications. This indicates that the optimal content of the filler must be determined and taken into account when optimizing both ferroelectric and magnetoelectric properties.


2014 ◽  
Vol 933 ◽  
pp. 548-553 ◽  
Author(s):  
Yong Qiang Wang ◽  
Ying Lin Xiao

Polyvinylidene Fluoride (referred to as PVDF) piezoelectric film is a new type of polymer piezoelectric materials. Because of its light weight, thin thickness, high sensitivity, high mechanical strength, wide frequency response range and other advantages, it has the application prospect in the explosion field. In this article, film sensors were made based on the PVDF piezoelectric film, and its role in the sensors is the sensitive element. The result of the low dynamic pressure calibration tests showed that it has a very high linear degree and good reproducibility, so that it can be used for low-pressure section of the shock wave pressure measurement.


2018 ◽  
Vol 48 (1) ◽  
pp. 191-217 ◽  
Author(s):  
Susan Trolier-McKinstry ◽  
Shujun Zhang ◽  
Andrew J. Bell ◽  
Xiaoli Tan

Piezoelectric materials convert between electrical and mechanical energies such that an applied stress induces a polarization and an applied electric field induces a strain. This review describes the fundamental mechanisms governing the piezoelectric response in high-performance piezoelectric single crystals, ceramics, and thin films. While there are a number of useful piezoelectric small molecules and polymers, the article focuses on inorganic materials displaying the piezoelectric effect. Piezoelectricity is first defined, and the mechanisms that contribute are discussed in terms of the key crystal structures for materials with large piezoelectric coefficients. Exemplar systems are then discussed and compared for the cases of single crystals, bulk ceramics, and thin films.


2006 ◽  
Vol 514-516 ◽  
pp. 915-919 ◽  
Author(s):  
Jivago Serrado-Nunes ◽  
Vitor Sencadas ◽  
Ai Ying Wu ◽  
Paula M. Vilarinho ◽  
Senentxu Lanceros-Méndez

Chain reorientation may be induced in polyvinylidene fluoride (PVDF) in its β-phase by applying a deformation perpendicular to the pre-oriented polymeric chains. This reorientation begins right after the yielding point and seems to be completed when the stress-strain curve stabilizes. As the deformation process plays an important role in the processing and optimisation properties of the material for practical applications, different deformation stress was applied to the PVDF lamellas and their topographic change and piezoelectric response were studied by means of scanning force microscopy in a piezo-response mode. The experimental results confirm the previously observed chain reorientation that occurs right after the yielding point and that is completed when the yielding region is passed. This reorientation is accompanied by a stretching of the granular structures observed in the topographical images and variations in the domain response. The observed results help to explain the variations in the macroscopic response of the material.


2006 ◽  
Vol 955 ◽  
Author(s):  
Adam Kabulski ◽  
John Harman ◽  
Parviz Famouri ◽  
Dimitris Korakakis

ABSTRACTAluminum nitride (AlN) films are being investigated for piezoelectric and high temperature applications, but the piezoelectric response is still much lower than that of more common piezoelectric materials such as lead zirconate titanate or zinc oxide. A method of maximizing the piezoelectric response of aluminum nitride has been explored by depositing stack structures composed of aluminum nitride and platinum. These stack structures were created by depositing a thin, ∼50nm, metal layer in between thicker, ∼150-350nm, layers of the piezoelectric film. Platinum was chosen as the metal interlayer due to the tendency of AlN to become highly c-oriented when deposited on Pt. An electric field was applied across the structure and displacements were measured using a Laser Doppler Vibrometer. A maximum piezoelectric coefficient d33 was found to be over two times larger than the theoretical value for AlN (3.9pm/V). However, some of the stack structures were found to be conductive when measuring the displacement. I-V measurements as well as Fowler-Nordheim theory and plots were applied to investigate tunneling due to high electric fields in the structures.


2011 ◽  
Vol 492 ◽  
pp. 189-193
Author(s):  
Qiang Chen ◽  
Jin Xu Li ◽  
Li Hui Zhang ◽  
Yang Bai ◽  
Yan Jing Su ◽  
...  

(K,Na)NbO3-based piezoelectric ceramics are promising candidates for practical applications of lead-free piezoelectric materials due to their excellent piezoelectric properties. In this paper, lead-free piezoelectric ceramics (K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3(KNL-NTS)were successfully fabricated by traditional ceramics processing. The effects of sintering temperature on the structure, density and electrical properties of KNL-NTS ceramics were investigated. Crystal phases of both calcined powders and KNL-NTS ceramics have orthorhombic structure similar to that of KNbO3 ceramics. The piezoelectric coefficient first increases and then decreases with sintering temperature in the 1100-1180 °C range. KNL-NTS ceramics sintered at 1160 °C shows the maximum piezoelectric coefficient of about 199 pC·N-1and the maximum remnant polarization of 18.75 μC·cm-2, with the corresponding 10.95 kV·cm-1coercive field and 4.74 g/cm3density.


2014 ◽  
Vol 605 ◽  
pp. 263-266 ◽  
Author(s):  
Marco di Donato ◽  
Sergio Bocchini ◽  
Giancarlo Canavese ◽  
Valentina Cauda ◽  
Mariangela Lombardi

As the robotics is moving its interest from the machine tools for industrial production to biomimetic, even human-like systems, the need for materials that fulfill skin role arises. Skin presents a structure that has multiple roles such as protection and tact. The basic requirements for a skin mimetic material are flexibility and a measurable physical property triggered by the pressure. In this work hybrid piezoelectric materials are prepared and characterized. The flexibility of materials is assured by the polymeric matrices while ceramic oxide fillers grant a piezoelectric response. Polyvinilidene fluoride (PVDF) is used both in its piezoactive β-form and piezopassive α-form, in order to investigate the contribution of the organic phase to the overall response. Polymethylmethacrylate (PMMA) is also used in order to compare the behavior of an amorphous and a semi-crystalline polymer. Lead-based ceramics were avoided, despite they are known to be the most effective piezoelectric materials, to prevent complications in terms of toxicity. Ceramic materials with lower piezoelectric coefficient, but more suitable for human robotics such as barium titanate and zinc oxide are preferred. Organic matrices and ceramic powders are then employed for preparing composites with different compositions, microstructures and mechanical behaviors, in order to evaluate their piezoelectric response in view of their application as sensing skin for robots.


2008 ◽  
Vol 1129 ◽  
Author(s):  
A. Kabulski ◽  
V. R. Pagán ◽  
D Korakakis

AbstractAluminum nitride (AlN) films have been explored for sensor and actuator applications, but the resultant piezoelectric coefficient is still too low to make the films more competitive with more commonly used piezoelectric materials such as lead zirconate titanate (PZT). While AlN does have the disadvantage of a lower piezoelectric response, it does have the ability to maintain its piezoelectric properties above 400°C, something that is not possible with other piezoelectric materials. It is desirable to achieve a larger piezoelectric response for AlN in order to facilitate the integration of nitride based devices into existing technologies but conventional methods of improving the response by growing higher quality film only result in slight improvements in the piezoelectric response. A method of improving the d33 piezoelectric coefficient beyond any values found in literature may be possible by exploring methods of improving PZT films.Rare earth doping has been reported to improve the piezoelectric properties of PZT resulting in significant increases in the piezoelectric coefficient. Research has been conducted using rare earth dopants to improve upon the optical properties of AlN, but the impact on piezoelectric effect has never been considered.Thin, 250-1000 nm, AlN:Er films have been reactively sputtered using erbium (Er)/aluminum alloyed targets to explore any improvement in piezoelectric properties of the AlN:Er films as compared to AlN films. AlN films with 0.5 and 1.5% Er concentrations have been found to have piezoelectric coefficients that are larger than comparable ‘Er-free’ AlN films. AlN films with only 0.5% Er quantities were found to increase the d33 coefficient compared to a similar AlN film depending on the thickness of the film. This increase results in d33,f values greater than 7pm/V which is larger than most values found in literature. By increasing the Er content to 1.5%, values of d33,f were found to be as large as 15 pm/V. This enhanced piezoelectric response is still lower than that of PZT, but can be used to create superior actuator devices than that of typical AlN films.


2019 ◽  
Vol 15 (3) ◽  
pp. 198-206 ◽  
Author(s):  
Sarfaraz Ahmed Mahesar ◽  
Saeed Ahmed Lakho ◽  
Syed Tufail Hussain Sherazi ◽  
Hamid Ali Kazi ◽  
Kamran Ahmed Abro ◽  
...  

Background: Captopril is the synthetic dipeptide used as an angiotensin converting enzyme inhibitor. Captopril is used to treat hypertension as well as for the treatment of moderate heart failure. Analytical instrumentation and methodology plays an important role in pharmaceutical analysis. Methods: This review presents some important applications of electrochemical modes used for the analysis of captopril. So far captopril has been analyzed by using different bare and modified working electrodes with a variety of modifiers from organic and inorganic materials to various types of nano particles/materials. Results: This paper presents some of the methods which have been published in the last few years i.e. from 2003 to 2016. This review highlights the role of the analytical instrumentation, particularly electrochemical methods in assessing captopril using various working electrodes. Conclusion: A large number of studies on voltammetry noted by means of various bare and modified electrodes. Among all of the published voltammetric methods, DPV, SWV, CV and miscellaneous modes were trendy techniques used to analyze captopril in pharmaceutical formulations as well as biological samples. Electrodes modified with nanomaterials are promising sensing tools as this showed high sensitivity, good accuracy with precision as well as selectivity. In comparison to chromatographic methods, the main advantages of electrochemical methods are its cheaper instrumentation, lower detection limit and minimal or no sample preparation.


Sign in / Sign up

Export Citation Format

Share Document