scholarly journals Enhancing Electrical Outputs of Piezoelectric Nanogenerators by Controlling the Dielectric Constant of ZnO/PDMS Composite

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 630
Author(s):  
Yerkezhan Amangeldinova ◽  
Dimaral Aben ◽  
Xiaoting Ma ◽  
Heesang Ahn ◽  
Kyujung Kim ◽  
...  

Structural optimizations of the piezoelectric layer in nanogenerators have been predicted to enhance the output performance in terms of the figure of merit. Here, we report the effect of dielectric constant on electrical outputs of piezoelectric nanogenerator using ZnO/PDMS composites with varied ZnO coverages. The dielectric constant of piezoelectric layers was adjusted from 3.37 to 6.75. The electrical output voltage of 9 mV was achieved in the nanogenerator containing the ZnO/PDMS composite with the dielectric constant of 3.46, which is an 11.3-fold enhancement compared to the value of the nanogenerator featuring the composite with high dielectric constants. Significantly, lowering the dielectric constant of the piezoelectric layer improves the electrical output performance of piezoelectric nanogenerators.

Author(s):  
Xiao Meng ◽  
Zhuo Zhang ◽  
Dabin Lin ◽  
Weiguo Liu ◽  
Shun Zhou ◽  
...  

AbstractRecently, piezoelectric/triboelectric nanogenerators based on piezoelectric composite materials have been intensively studied to achieve high electrical output performance. In this work, flexible BaTiO3 (BT)/PDMS nanocomposite films with various sizes and concentrations were fabricated and used as the nanogenerators. The influence of dielectric properties on the electrical output of nanogenerators was studied as well as the structure of the composites. The dielectric constant increased from 6.5 to 8 with the concentration of BT nanoparticles and decreased with the frequency from 102 to 106 Hz. Furthermore, the dielectric constant showed 11% decrease with the temperature range from 30 to 180 °C. It was found that the concentration of BT nanoparticles has promoted the electrical output of nanogenerators. The output voltage and current are all enhanced with the BT nanoparticles, which reached 200 V and 0.24 °A in TENG with 40 wt% BT nanoparticles, respectively. The selected device exhibited the power of 0.16 mW and employed to demonstrate its ability to power wearable/portable electronics by lighting the LEDs.


2018 ◽  
Vol 2018 (1) ◽  
pp. 000389-000392
Author(s):  
Saranraj Karuppuswami ◽  
Saikat Mondal ◽  
Mohd Ifwat Mohd Ghazali ◽  
Premjeet Chahal

Abstract In this paper, additive manufacturing (3D printing) is used to fabricate and demonstrate a reusable microfluidic coupled rectangular cavity resonator for characterizing liquids in small volumes. The designed cavity operates in the fundamental TE101 mode and resonates at 4.12 GHz. The resonance of the cavity is perturbed by the sample placed in a small volume sample holder through a slot in the top cover. Two different perturbation configurations are investigated: i) strongly coupled (liquids with low to medium dielectric constants), and ii) weakly coupled (liquids with medium to high dielectric constant). The sample holder is loaded with different solvents and the shift in the resonance frequency is monitored. Based on these changes, the dielectric constant of the solvent is theoretically estimated and compared to standard values. The reusable liquid sensor holds significant potential in identifying and quantifying unknown liquid samples in the supply chain.


2012 ◽  
Vol 496 ◽  
pp. 263-267
Author(s):  
Rui Li ◽  
Jian Zhong Pei ◽  
Yan Wei Li ◽  
Xin Shi ◽  
Qun Le Du

A novel all-polymeric material with high dielectric constant (k) has been developed by blending poly (vinylidene fluoride) (PVDF) with polyamide-6 (PA6). The dependence of the dielectric properties on frequency and polymer volume fraction was investigated. When the volume fraction of PA6 is 20%, the dielectric property is better than others. The SEM investigations suggest that the enhanced dielectric behavior originates from significant interfacial interactions of polymer-polymer. The XRD demonstrate that the PA6 and PVDF affect the crystalline behavior of each component. Furthermore, the stable dielectric constants of the blends could be tuned by adjusting the content of the polymers. The created high-k all-polymeric blends represent a novel type of material that are simple technology and easy to process, and is of relatively high dielectric constant, applications as flexible electronics.


MRS Advances ◽  
2021 ◽  
Author(s):  
Gio Ferro ◽  
Dithi Ganjam ◽  
Maia Gibson ◽  
Katie Partington ◽  
Akshay Trikha ◽  
...  

AbstractBarium titanate (BTO) is a ferroelectric perovskite material used in energy storage applications because of its high dielectric constant. A previous study showed that the dielectric constant for BTO nanoparticles drastically increases to over 15,000 at a particle size of 70 nm. This result is highly contested, but its implications to energy storage motivated our investigation into the dielectric constants of BTO nanoparticles that are incorporated into a polymer matrix. We developed a novel method of using image processing techniques on transmission electron microscope images of BTO-polymer nanocomposites. Data on the positions, shapes, sizes, and orientations of BTO nanoparticles were used to build more realistic computational models that simulate the dielectric behavior of the nanocomposites. Here, we investigate the relationship between regions of enhanced electric field and the composite dielectric constant.


2019 ◽  
Vol 55 (1) ◽  
pp. 83-86 ◽  
Author(s):  
Aswathy Joseph ◽  
Marylin Mary Xavier ◽  
Jacek Fal ◽  
Gaweł Żyła ◽  
Soorya Sasi ◽  
...  

An iron oxide based-electroactive IoNanofluid with a high dielectric constant, high stability and low viscosity was synthesized from ferrous sulphate heptahydrate via a facile microwave assisted one-step route in 1-butyl-4-methylpyridinium chloride.


2018 ◽  
Vol 35 (4) ◽  
pp. 755-759 ◽  
Author(s):  
Aseel A. Kareem

Abstract Polyimide/MWCNTs nanocomposites have been fabricated by solution mixing process. In the present study, we have investigated electrical conductivity and dielectric properties of PI/MWCNT nanocomposites in frequency range of 1 kHz to 100 kHz at different MWCNTs concentrations from 0 wt.% to 15 wt.%. It has been observed that the electrical conductivity and dielectric constants are enhanced significantly by several orders of magnitude up to 15 wt.% of MWCNTs content. The electrical conductivity increases as the frequency is increased, which can be attributed to high dislocation density near the interface. The rapid increase in the dielectric constant at a high MWCNTs content can be explained by the formation of a percolative path of the conducting network through the sample for a concentration corresponding to the percolation threshold. The high dielectric constant at a low frequency (1 kHz) is thought to originate from the space charge polarization mechanism. I-V characteristics of these devices indicate a significant increase in current with an increase in multi-walled carbon nanotube concentration in the composites. The SEM images show improved dispersion of MWCNTs in the PI matrix; this is due to the strong interfacial interactions.


1994 ◽  
Vol 9 (8) ◽  
pp. 1932-1935 ◽  
Author(s):  
Sahana Chakraborty ◽  
A.K. Bera ◽  
S. Mollah ◽  
B.K. Chaudhuri

BaTiO3 doped 90V2O5−10Bi2O3 (VB) oxide glasses show a larger dielectric constant (102-104) compared to that of the base glass VB (∼102). The VB glass with 15 wt.% BaTiO3 shows the largest dielectric constant, and all the glasses show a Debye-type dielectric relaxation behavior. The increase in dielectric constant appears to be mainly due to the formation of microcrystalline clusters of BaTiO3 (1.8–8 μm, depending on the BaTiO3 concentration present in the base glass). Other than the dilution effect with BaTiO3, the glass-former oxide Bi2O3 also influences the dielectric behavior of BaTiO3 doped VB glasses.


2014 ◽  
Vol 608 ◽  
pp. 193-199 ◽  
Author(s):  
Oratai Jongprateep ◽  
Jednupong Palomas ◽  
Tunchanoke Khongnakhon

Dielectric capacitors can be utilized in powder conversion systems of applications such as hybrid-electric and fuel cell vehicles. In order to fabricate capacitors that are suitable for practical uses, the materials should have moderately high dielectric constants, while retaining low loss. In this study, strontium titanate and strontium titanate samples doped with 10, 20, 30 at% of Mg and Al were tested for dielectric permittivity and dielectric loss. The results indicated that an increase in the amount of dopants led to enhancement of dielectric constants. The value of dielectric constant of strontium titanate with 30 at% Mg was four times higher than that of the undoped strontium titanate, while the samples with 30 at% Al could achieve the dielectric constant five times higher than that of the undoped sample. Low dielectric loss, in the range between 0.001-0.024, was observed.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3104
Author(s):  
Damien Richert ◽  
José Morán-Meza ◽  
Khaled Kaja ◽  
Alexandra Delvallée ◽  
Djamel Allal ◽  
...  

The importance of high dielectric constant materials in the development of high frequency nano-electronic devices is undeniable. Their polarization properties are directly dependent on the value of their relative permittivity. We report here on the nanoscale metrological quantification of the dielectric constants of two high-κ materials, lead zirconate titanate (PZT) and lead magnesium niobate-lead titanate (PMN-PT), in the GHz range using scanning microwave microscopy (SMM). We demonstrate the importance of the capacitance calibration procedure and dimensional measurements on the weight of the combined relative uncertainties. A novel approach is proposed to correct lateral dimension measurements of micro-capacitive structures using the microwave electrical signatures, especially for rough surfaces of high-κ materials. A new analytical expression is also given for the capacitance calculations, taking into account the contribution of fringing electric fields. We determine the dielectric constant values εPZT = 445 and εPMN-PT = 641 at the frequency around 3.6 GHz, with combined relative uncertainties of 3.5% and 6.9% for PZT and PMN-PT, respectively. This work provides a general description of the metrological path for a quantified measurement of high dielectric constants with well-controlled low uncertainty levels.


2002 ◽  
Vol 755 ◽  
Author(s):  
Mai T.N. Pham ◽  
B.A. Boukamp ◽  
H.J.M. Bouwmeester ◽  
D.H.A. Blank

ABSTRACTComposites between ferroelectric material and a dispersed metal phase are of great interest due to the improvement in dielectric properties for such applications as high capacitance capacitors, non-volatile memory, ect. Using a colloidal method, Pt particles with a size of 3–5 nm were dispersed homogeneously in a PZT (PbZr0.53Ti0.43O3) matrix. No unwanted reaction phase between PZT and Pt during sintering at 1150 °C could be detected by X-ray diffraction. Electrical properties were investigated by impedance spectroscopy measurement. The effective dielectric constant increased remarkably as a power function of Pt volume content and can be described by the percolation theory. At 25 vol.% of Pt the dielectric constant of the composite is 4 times larger than that of pure PZT. The temperature dependence of the electrical properties is also influenced by the metallic phase fraction.


Sign in / Sign up

Export Citation Format

Share Document