scholarly journals Drug-Induced Nephrotoxicity Assessment in 3D Cellular Models

Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 3
Author(s):  
Pengfei Yu ◽  
Zhongping Duan ◽  
Shuang Liu ◽  
Ivan Pachon ◽  
Jian-Xing Ma ◽  
...  

The kidneys are often involved in adverse effects and toxicity caused by exposure to foreign compounds, chemicals, and drugs. Early predictions of these influences are essential to facilitate new, safe drugs to enter the market. However, in current drug treatments, drug-induced nephrotoxicity accounts for 1/4 of reported serious adverse reactions, and 1/3 of them are attributable to antibiotics. Drug-induced nephrotoxicity is driven by multiple mechanisms, including altered glomerular hemodynamics, renal tubular cytotoxicity, inflammation, crystal nephropathy, and thrombotic microangiopathy. Although the functional proteins expressed by renal tubules that mediate drug sensitivity are well known, current in vitro 2D cell models do not faithfully replicate the morphology and intact renal tubule function, and therefore, they do not replicate in vivo nephrotoxicity. The kidney is delicate and complex, consisting of a filter unit and a tubular part, which together contain more than 20 different cell types. The tubular epithelium is highly polarized, and maintaining cellular polarity is essential for the optimal function and response to environmental signals. Cell polarity depends on the communication between cells, including paracrine and autocrine signals, as well as biomechanical and chemotaxis processes. These processes affect kidney cell proliferation, migration, and differentiation. For drug disposal research, the microenvironment is essential for predicting toxic reactions. This article reviews the mechanism of drug-induced kidney injury, the types of nephrotoxicity models (in vivo and in vitro models), and the research progress related to drug-induced nephrotoxicity in three-dimensional (3D) cellular culture models.

2018 ◽  
Vol 18 (4) ◽  
pp. 246-255 ◽  
Author(s):  
Lara Termini ◽  
Enrique Boccardo

In vitro culture of primary or established cell lines is one of the leading techniques in many areas of basic biological research. The use of pure or highly enriched cultures of specific cell types obtained from different tissues and genetics backgrounds has greatly contributed to our current understanding of normal and pathological cellular processes. Cells in culture are easily propagated generating an almost endless source of material for experimentation. Besides, they can be manipulated to achieve gene silencing, gene overexpression and genome editing turning possible the dissection of specific gene functions and signaling pathways. However, monolayer and suspension cultures of cells do not reproduce the cell type diversity, cell-cell contacts, cell-matrix interactions and differentiation pathways typical of the three-dimensional environment of tissues and organs from where they were originated. Therefore, different experimental animal models have been developed and applied to address these and other complex issues in vivo. However, these systems are costly and time consuming. Most importantly the use of animals in scientific research poses moral and ethical concerns facing a steadily increasing opposition from different sectors of the society. Therefore, there is an urgent need for the development of alternative in vitro experimental models that accurately reproduce the events observed in vivo to reduce the use of animals. Organotypic cultures combine the flexibility of traditional culture systems with the possibility of culturing different cell types in a 3D environment that reproduces both the structure and the physiology of the parental organ. Here we present a summarized description of the use of epithelial organotypic for the study of skin physiology, human papillomavirus biology and associated tumorigenesis.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 930
Author(s):  
Donatella Delle Cave ◽  
Riccardo Rizzo ◽  
Bruno Sainz ◽  
Giuseppe Gigli ◽  
Loretta L. del Mercato ◽  
...  

Pancreatic cancer, the fourth most common cancer worldwide, shows a highly unsuccessful therapeutic response. In the last 10 years, neither important advancements nor new therapeutic strategies have significantly impacted patient survival, highlighting the need to pursue new avenues for drug development discovery and design. Advanced cellular models, resembling as much as possible the original in vivo tumor environment, may be more successful in predicting the efficacy of future anti-cancer candidates in clinical trials. In this review, we discuss novel bioengineered platforms for anticancer drug discovery in pancreatic cancer, from traditional two-dimensional models to innovative three-dimensional ones.


2014 ◽  
Vol 83 (1) ◽  
pp. 28-38 ◽  
Author(s):  
Teresa M. DesRochers ◽  
Erica Palma Kimmerling ◽  
Dakshina M. Jandhyala ◽  
Wassim El-Jouni ◽  
Jing Zhou ◽  
...  

Shiga toxins (Stx) are a family of cytotoxic proteins that can cause hemolytic-uremic syndrome (HUS), a thrombotic microangiopathy, following infections by Shiga toxin-producingEscherichia coli(STEC). Renal failure is a key feature of HUS and a major cause of childhood renal failure worldwide. There are currently no specific therapies for STEC-associated HUS, and the mechanism of Stx-induced renal injury is not well understood primarily due to a lack of fully representative animal models and an inability to monitor disease progression on a molecular or cellular level in humans at early stages. Three-dimensional (3D) tissue models have been shown to be morein vivo-like in their phenotype and physiology than 2D cultures for numerous disease models, including cancer and polycystic kidney disease. It is unknown whether exposure of a 3D renal tissue model to Stx will yield a morein vivo-like response than 2D cell culture. In this study, we characterized Stx2-mediated cytotoxicity in a bioengineered 3D human renal tissue model previously shown to be a predictor of drug-induced nephrotoxicity and compared its response to Stx2 exposure in 2D cell culture. Our results demonstrate that although many mechanistic aspects of cytotoxicity were similar between 3D and 2D, treatment of the 3D tissues with Stx resulted in an elevated secretion of the kidney injury marker 1 (Kim-1) and the cytokine interleukin-8 compared to the 2D cell cultures. This study represents the first application of 3D tissues for the study of Stx-mediated kidney injury.


Author(s):  
Jing Jing Yang ◽  
Jian Fang Liu ◽  
Takayuki Kurokawa ◽  
Nobuto Kitamura ◽  
Kazunori Yasuda ◽  
...  

Hydrogels are used as scaffolds for tissue engineering in vitro & in vivo because their three-dimensional network structure and viscoelasticity are similar to those of the macromolecular-based extracellular matrix (ECM) in living tissue. Especially, the synthetic hydrogels with controllable and reproducible properties were used as scaffolds to study the behaviors of cells in vitro and implanted test in vivo. In this review, two different structurally designed hydrogels, single-network (SN) hydrogels and double-network (DN) hydrogels, were used as scaffolds. The behavior of two cell types, anchorage-dependent cells and anchorage-independent cells, and the differentiation behaviors of embryoid bodies (EBs) were investigated on these hydrogels. Furthermore, the behavior of chondrocytes on DN hydrogels in vitro and the spontaneous cartilage regeneration induced by DN hydrogels in vivo was examined.


2020 ◽  
Vol 9 (2) ◽  
pp. 91-100 ◽  
Author(s):  
Xuan Qiu ◽  
Yufa Miao ◽  
Xingchao Geng ◽  
Xiaobing Zhou ◽  
Bo Li

Abstract There have been intensive efforts to identify in vivo biomarkers that can be used to monitor drug-induced kidney damage before significant impairment occurs. Kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, clusterin, β2-microglobulin and cystatin C (CysC) have been validated as clinical or preclinical biomarkers in urinary and plasma predictive of acute and chronic kidney injuries and diseases. A high-throughput in vitro assay predictive of nephrotoxicity could potentially be implemented in early drug discovery stage to reduce attrition at later stages of drug development. To assess the potential of these known in vivo biomarkers for in vitro evaluation of drug-induced nephrotoxicity, we selected four nephrotoxic agents (cisplatin, cyclosporin, aristolochic acid I and gentamicin) and detected their effects on the protein levels of nephrotoxic biomarkers in RPTEC/TERT1 cells. The protein levels of clusterin, CysC, GSTπ and TIMP-1 significantly increased in the conditioned media of RPTEC/TERT1 cells treated with cisplatin, cyclosporin, aristolochic acid I and gentamicin. The messenger RNA levels of clusterin, CysC, GSTπ and TIMP-1 also increased in RPTEC/TERT1 cells treated with cisplatin, cyclosporin, aristolochic acid I and gentamicin, indicating that drug-induced upregulation involves transcriptional activation. Taken together, the results clearly demonstrate that among the known in vivo nephrotoxic biomarkers, clusterin, CysC, GSTπ and TIMP-1 can be effectively used as in vitro biomarkers for drug-induced nephrotoxicity in RPTEC/TERT1 cells.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaozhi Zhao ◽  
Xuefeng Qiu ◽  
Yanting Zhang ◽  
Shiwei Zhang ◽  
Xiaoping Gu ◽  
...  

It has been shown that administration of adipose derived mesenchymal stem cells (AdMSCs) enhanced structural and functional recovery of renal ischemia-reperfusion (IR) injury. Low engraftment of stem cells, however, limits the therapeutic effects of AdMSCs. The present study was designed to enhance the therapeutic effects of AdMSCs by delivering AdMSCs in a three-dimensional (3D) aggregates form. Microwell was used to produce 3D AdMSCs aggregates. In vitro data indicated that AdMSCs in 3D aggregates were less susceptible to oxidative and hypoxia stress induced by 200 μM peroxide and hypoxia/reoxygenation, respectively, compared with those cultured in two-dimensional (2D) monolayer. Furthermore, AdMSCs in 3D aggregates secreted more proangiogenic factors than those cultured in 2D monolayer. 2D AdMSCs or 3D AdMSCs aggregates were injected into renal cortex immediately after induction of renal IR injury. In vivo data revealed that 3D aggregates enhanced the effects of AdMSCs in recovering function and structure after renal IR injury. Improved grafted AdMSCs were observed in kidney injected with 3D aggregates compared with AdMSCs cultured in 2D monolayer. Our results demonstrated that 3D AdMSCs aggregated produced by microwell enhanced the retention and therapeutic effects of AdMSCs for renal IR injury.


2021 ◽  
Vol 9 (4) ◽  
pp. 173-184
Author(s):  
O. V. Muslimova ◽  
V. A. Evteev ◽  
I. A. Mazerkina ◽  
E. A. Sokova ◽  
A. B. Prokofiev ◽  
...  

Drug-induced kidney injury (DIKI) accounts for 8 to 60% of episodes of acute kidney injury (AKI) among hospital patients. Early DIKI detection and timely adjustment of therapy will help reduce the kidney injury incidence and mortality. The aim of the study was to analyse scientific literature on the biomarkers used in DIKI diagnosis. The study revealed that the use of such kidney damage markers as serum creatinine, urinary output, urea nitrogen, sodium excretion, urinary sediment microscopy is limited because they do not give a full picture of the kidney injury degree and progression and do not allow for early AKI diagnosis. It was demonstrated that some of the most promising biomarkers are KIM-1, L-FABP, NAG, NGAL, cystatin C, clusterin, β2-microglobulin, МСР-1, IGFBP7, and TIMP-2. However, recommendations for determination of these biomarkers’ urine or blood concentrations for AKI diagnosis are somewhat preliminary, because there have been insufficient clinical and preclinical studies to establish validity of such tests. No precise algorithms based on determination of the biomarkers levels in urea and/or blood serum have been developed for AKI risk assessment, diagnosis, monitoring, and treatment. Thus, further research is necessary to investigate different AKI biomarkers and improve experimental models (both in vivo and in vitro), which will support assessment of potential nephrotoxic properties of existing and new medicinal products.


Author(s):  
Ana S. Serras ◽  
Joana S. Rodrigues ◽  
Madalena Cipriano ◽  
Armanda V. Rodrigues ◽  
Nuno G. Oliveira ◽  
...  

The poor predictability of human liver toxicity is still causing high attrition rates of drug candidates in the pharmaceutical industry at the non-clinical, clinical, and post-marketing authorization stages. This is in part caused by animal models that fail to predict various human adverse drug reactions (ADRs), resulting in undetected hepatotoxicity at the non-clinical phase of drug development. In an effort to increase the prediction of human hepatotoxicity, different approaches to enhance the physiological relevance of hepatic in vitro systems are being pursued. Three-dimensional (3D) or microfluidic technologies allow to better recapitulate hepatocyte organization and cell-matrix contacts, to include additional cell types, to incorporate fluid flow and to create gradients of oxygen and nutrients, which have led to improved differentiated cell phenotype and functionality. This comprehensive review addresses the drug-induced hepatotoxicity mechanisms and the currently available 3D liver in vitro models, their characteristics, as well as their advantages and limitations for human hepatotoxicity assessment. In addition, since toxic responses are greatly dependent on the culture model, a comparative analysis of the toxicity studies performed using two-dimensional (2D) and 3D in vitro strategies with recognized hepatotoxic compounds, such as paracetamol, diclofenac, and troglitazone is performed, further highlighting the need for harmonization of the respective characterization methods. Finally, taking a step forward, we propose a roadmap for the assessment of drugs hepatotoxicity based on fully characterized fit-for-purpose in vitro models, taking advantage of the best of each model, which will ultimately contribute to more informed decision-making in the drug development and risk assessment fields.


RSC Advances ◽  
2019 ◽  
Vol 9 (31) ◽  
pp. 17995-18007 ◽  
Author(s):  
Lingyan Wu ◽  
Gaia Ferracci ◽  
Yan Wang ◽  
Teng Fei Fan ◽  
Nam-Joon Cho ◽  
...  

As drug-induced hepatotoxicity represents one of the most common causes of drug failure, three-dimensional in vitro liver platforms represent a fantastic toolbox to predict drug toxicity and reduce in vivo studies and drug attrition rates.


2019 ◽  
Vol 93 (12) ◽  
pp. 3397-3418 ◽  
Author(s):  
João Faria ◽  
Sabbir Ahmed ◽  
Karin G. F. Gerritsen ◽  
Silvia M. Mihaila ◽  
Rosalinde Masereeuw

Abstract The kidney is frequently involved in adverse effects caused by exposure to foreign compounds, including drugs. An early prediction of those effects is crucial for allowing novel, safe drugs entering the market. Yet, in current pharmacotherapy, drug-induced nephrotoxicity accounts for up to 25% of the reported serious adverse effects, of which one-third is attributed to antimicrobials use. Adverse drug effects can be due to direct toxicity, for instance as a result of kidney-specific determinants, or indirectly by, e.g., vascular effects or crystals deposition. Currently used in vitro assays do not adequately predict in vivo observed effects, predominantly due to an inadequate preservation of the organs’ microenvironment in the models applied. The kidney is highly complex, composed of a filter unit and a tubular segment, together containing over 20 different cell types. The tubular epithelium is highly polarized, and the maintenance of this polarity is critical for optimal functioning and response to environmental signals. Cell polarity is dependent on communication between cells, which includes paracrine and autocrine signals, as well as biomechanic and chemotactic processes. These processes all influence kidney cell proliferation, migration, and differentiation. For drug disposition studies, this microenvironment is essential for prediction of toxic responses. This review provides an overview of drug-induced injuries to the kidney, details on relevant and translational biomarkers, and advances in 3D cultures of human renal cells, including organoids and kidney-on-a-chip platforms.


Sign in / Sign up

Export Citation Format

Share Document