scholarly journals LSS-RM: Using Multi-Mounted Devices to Construct a Lightweight Site-Survey Radio Map for WiFi Positioning

Micromachines ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 458 ◽  
Author(s):  
Wei Yang ◽  
Chundi Xiu ◽  
Jiarui Ye ◽  
Zhixing Lin ◽  
Haisong Wei ◽  
...  

A WiFi-received signal strength index (RSSI) fingerprinting-based indoor positioning system (WiFi-RSSI IPS) is widely studied due to advantages of low cost and high accuracy, especially in a complex indoor environment where performance of the ranging method is limited. The key drawback that limits the large-scale deployment of WiFi-RSSI IPS is time-consuming offline site surveys. To solve this problem, we developed a method using multi-mounted devices to construct a lightweight site-survey radio map (LSS-RM) for WiFi positioning. A smartphone was mounted on the foot (Phone-F) and another on the waist (Phone-W) to scan WiFi-RSSI and simultaneously sample microelectromechanical system inertial measurement-unit (MEMS-IMU) readings, including triaxial accelerometer, gyroscope, and magnetometer measurements. The offline site-survey phase in LSS-RM is a client–server model of a data collection and preprocessing process, and a post calibration process. Reference-point (RP) coordinates were estimated using the pedestrian dead-reckoning algorithm. The heading was calculated with a corner detected by Phone-W and the preassigned site-survey trajectory. Step number and stride length were estimated using Phone-F based on the stance-phase detection algorithm. Finally, the WiFi-RSSI radio map was constructed with the RP coordinates and timestamps of each stance phase. Experimental results show that our LSS-RM method can reduce the time consumption of constructing a WiFi-RSSI radio map from 54 min to 7.6 min compared with the manual site-survey method. The average positioning error was below 2.5 m with three rounds along the preassigned site-survey trajectory. LSS-RM aims to reduce offline site-survey time consumption, which would cut down on manpower. It can be used in the large-scale implementation of WiFi-RSSI IPS, such as shopping malls, hospitals, and parking lots.

2014 ◽  
Vol 67 (6) ◽  
pp. 929-949 ◽  
Author(s):  
Yan Li ◽  
Jianguo Jack Wang

For indoor pedestrian navigation with a shoe-mounted inertial measurement unit (IMU), the zero velocity update (ZUPT) technique is implemented to constrain the sensors' error. ZUPT uses the fact that a stance phase appears in each step at zero velocity to correct IMU errors periodically. This paper introduces three main contributions we have achieved based on ZUPT. Since correct stance phase detection is critical for the success of applying ZUPT, we have developed a new approach to detect the stance phase of different gait styles, including walking, running and stair climbing. As the extension of ZUPT, we have proposed a new concept called constant velocity update (CUPT) to correct IMU errors on a moving platform with constant velocity, such as elevators or escalators where ZUPT is infeasible. A closed-loop step-wise smoothing algorithm has also been developed to eliminate discontinuities in the trajectory caused by sharp corrections. Experimental results demonstrate the effectiveness of the proposed algorithms.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Huisheng Liu ◽  
Zengcai Wang ◽  
Susu Fang ◽  
Chao Li

A constrained low-cost SINS/OD filter aided with magnetometer is proposed in this paper. The filter is designed to provide a land vehicle navigation solution by fusing the measurements of the microelectromechanical systems based inertial measurement unit (MEMS IMU), the magnetometer (MAG), and the velocity measurement from odometer (OD). First, accelerometer and magnetometer integrated algorithm is studied to stabilize the attitude angle. Next, a SINS/OD/MAG integrated navigation system is designed and simulated, using an adaptive Kalman filter (AKF). It is shown that the accuracy of the integrated navigation system will be implemented to some extent. The field-test shows that the azimuth misalignment angle will diminish to less than 1°. Finally, an outliers detection algorithm is studied to estimate the velocity measurement bias of the odometer. The experimental results show the enhancement in restraining observation outliers that improves the precision of the integrated navigation system.


2020 ◽  
Vol 10 (15) ◽  
pp. 5064
Author(s):  
Xuancen Liu ◽  
Yueneng Yang ◽  
Chenxiang Ma ◽  
Jie Li ◽  
Shifeng Zhang

Unmanned Aerial Vehicles (UAVs) have recently shown great performance collecting visual data through autonomous exploration and mapping, which are widely used in reconnaissance, surveillance, and target acquisition (RSTA) applications. In this paper, we present an onboard vision-based system for low-cost UAVs to autonomously track a moving target. Real-time visual tracking is achieved by using an object detection algorithm based on the Kernelized Correlation Filter (KCF) tracker. A 3-axis gimbaled camera with separate Inertial Measurement Unit (IMU) is used to aim at the selected target during flights. The flight control algorithm for tracking tasks is implemented on a customized quadrotor equipped with an onboard computer and a microcontroller. The proposed system is experimentally validated by successfully chasing a ground and aerial target in an outdoor environment, which has proven its reliability and efficiency.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2471 ◽  
Author(s):  
Nicole Zahradka ◽  
Ahad Behboodi ◽  
Henry Wright ◽  
Barry Bodt ◽  
Samuel Lee

Functional electrical stimulation systems are used as neuroprosthetic devices in rehabilitative interventions such as gait training. Stimulator triggers, implemented to control stimulation delivery, range from open- to closed-loop controllers. Finite-state controllers trigger stimulators when specific conditions are met and utilize preset sequences of stimulation. Wearable sensors provide the necessary input to differentiate gait phases during walking and trigger stimulation. However, gait phase detection is associated with inherent system delays. In this study, five stimulator triggers designed to compensate for gait phase detection delays were tested to determine which trigger most accurately delivered stimulation at the desired times of the gait cycle. Motion capture data were collected on seven typically-developing children while walking on an instrumented treadmill. Participants wore one inertial measurement unit on each ankle and gyroscope data were streamed into the gait phase detection algorithm. Five triggers, based on gait phase detection, were used to simulate stimulation to five muscle groups, bilaterally. For each condition, stimulation signals were collected in the motion capture software via analog channels and compared to the desired timing determined by kinematic and kinetic data. Results illustrate that gait phase detection is a viable finite-state control, and appropriate system delay compensations, on average, reduce stimulation delivery delays by 6.7% of the gait cycle.


Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2389 ◽  
Author(s):  
Huong Vu ◽  
Felipe Gomez ◽  
Pierre Cherelle ◽  
Dirk Lefeber ◽  
Ann Nowé ◽  
...  

Throughout the last decade, a whole new generation of powered transtibial prostheses and exoskeletons has been developed. However, these technologies are limited by a gait phase detection which controls the wearable device as a function of the activities of the wearer. Consequently, gait phase detection is considered to be of great importance, as achieving high detection accuracy will produce a more precise, stable, and safe rehabilitation device. In this paper, we propose a novel gait percent detection algorithm that can predict a full gait cycle discretised within a 1% interval. We called this algorithm an exponentially delayed fully connected neural network (ED-FNN). A dataset was obtained from seven healthy subjects that performed daily walking activities on the flat ground and a 15-degree slope. The signals were taken from only one inertial measurement unit (IMU) attached to the lower shank. The dataset was divided into training and validation datasets for every subject, and the mean square error (MSE) error between the model prediction and the real percentage of the gait was computed. An average MSE of 0.00522 was obtained for every subject in both training and validation sets, and an average MSE of 0.006 for the training set and 0.0116 for the validation set was obtained when combining all subjects’ signals together. Although our experiments were conducted in an offline setting, due to the forecasting capabilities of the ED-FNN, our system provides an opportunity to eliminate detection delays for real-time applications.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2988 ◽  
Author(s):  
Miguel D. Sánchez Sánchez Manchola ◽  
María J. Pinto Pinto Bernal ◽  
Marcela Munera ◽  
Carlos A. Cifuentes

Due to the recent rise in the use of lower-limb exoskeletons as an alternative for gait rehabilitation, gait phase detection has become an increasingly important feature in the control of these devices. In addition, highly functional, low-cost recovery devices are needed in developing countries, since limited budgets are allocated specifically for biomedical advances. To achieve this goal, this paper presents two gait phase partitioning algorithms that use motion data from a single inertial measurement unit (IMU) placed on the foot instep. For these data, sagittal angular velocity and linear acceleration signals were extracted from nine healthy subjects and nine pathological subjects. Pressure patterns from force sensitive resistors (FSR) instrumented on a custom insole were used as reference values. The performance of a threshold-based (TB) algorithm and a hidden Markov model (HMM) based algorithm, trained by means of subject-specific and standardized parameters approaches, were compared during treadmill walking tasks in terms of timing errors and the goodness index. The findings indicate that HMM outperforms TB for this hardware configuration. In addition, the HMM-based classifier trained by an intra-subject approach showed excellent reliability for the evaluation of mean time, i.e., its intra-class correlation coefficient (ICC) was greater than 0 . 75 . In conclusion, the HMM-based method proposed here can be implemented for gait phase recognition, such as to evaluate gait variability in patients and to control robotic orthoses for lower-limb rehabilitation.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2601
Author(s):  
Gábor Bakó ◽  
Zsolt Molnár ◽  
Zsófia Szilágyi ◽  
Csaba Biró ◽  
Edina Morvai ◽  
...  

High altitude aerial surveys have the potential to improve disturbance-free data collection in wildlife research, but previously, bird species were not recognizable in high-altitude orthophotos. This method of aerial surveying is effective and can be repeated frequently due to its low cost; it also has the additional advantage of being able to monitor the status of protected areas. In the case of waterbirds, due to the low vegetation coverage, aerial remote sensing is an exceptionally effective technique for surveying populations and detecting nests. Aerial surveys made at low altitudes can cause serious stress for birds. The method we developed and employed is unlikely to be detected by either ground-based or nesting birds but is far more reliable compared to the low-resolution imaging methods and to the evaluation of non-georeferenced photo series. The modern sensors and photogrammetric procedures enable the use of the present method worldwide; furthermore, the large-scale ortho image-derived information has become obtainable more frequently. Direct georeferencing makes the field geodetic survey unnecessary. Orthophotos with a 0.7 cm spatial resolution allow us to reliably identify even the individuals of smaller species, and by the use of oblique images, they can be tracked from two or four different directions.


1987 ◽  
Vol 19 (5-6) ◽  
pp. 701-710 ◽  
Author(s):  
B. L. Reidy ◽  
G. W. Samson

A low-cost wastewater disposal system was commissioned in 1959 to treat domestic and industrial wastewaters generated in the Latrobe River valley in the province of Gippsland, within the State of Victoria, Australia (Figure 1). The Latrobe Valley is the centre for large-scale generation of electricity and for the production of pulp and paper. In addition other industries have utilized the brown coal resource of the region e.g. gasification process and char production. Consequently, industrial wastewaters have been dominant in the disposal system for the past twenty-five years. The mixed industrial-domestic wastewaters were to be transported some eighty kilometres to be treated and disposed of by irrigation to land. Several important lessons have been learnt during twenty-five years of operating this system. Firstly the composition of the mixed waste stream has varied significantly with the passage of time and the development of the industrial base in the Valley, so that what was appropriate treatment in 1959 is not necessarily acceptable in 1985. Secondly the magnitude of adverse environmental impacts engendered by this low-cost disposal procedure was not imagined when the proposal was implemented. As a consequence, clean-up procedures which could remedy the adverse effects of twenty-five years of impact are likely to be costly. The question then may be asked - when the total costs including rehabilitation are considered, is there really a low-cost solution for environmentally safe disposal of complex wastewater streams?


BMC Biology ◽  
2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Amrita Srivathsan ◽  
Emily Hartop ◽  
Jayanthi Puniamoorthy ◽  
Wan Ting Lee ◽  
Sujatha Narayanan Kutty ◽  
...  

Abstract Background More than 80% of all animal species remain unknown to science. Most of these species live in the tropics and belong to animal taxa that combine small body size with high specimen abundance and large species richness. For such clades, using morphology for species discovery is slow because large numbers of specimens must be sorted based on detailed microscopic investigations. Fortunately, species discovery could be greatly accelerated if DNA sequences could be used for sorting specimens to species. Morphological verification of such “molecular operational taxonomic units” (mOTUs) could then be based on dissection of a small subset of specimens. However, this approach requires cost-effective and low-tech DNA barcoding techniques because well-equipped, well-funded molecular laboratories are not readily available in many biodiverse countries. Results We here document how MinION sequencing can be used for large-scale species discovery in a specimen- and species-rich taxon like the hyperdiverse fly family Phoridae (Diptera). We sequenced 7059 specimens collected in a single Malaise trap in Kibale National Park, Uganda, over the short period of 8 weeks. We discovered > 650 species which exceeds the number of phorid species currently described for the entire Afrotropical region. The barcodes were obtained using an improved low-cost MinION pipeline that increased the barcoding capacity sevenfold from 500 to 3500 barcodes per flowcell. This was achieved by adopting 1D sequencing, resequencing weak amplicons on a used flowcell, and improving demultiplexing. Comparison with Illumina data revealed that the MinION barcodes were very accurate (99.99% accuracy, 0.46% Ns) and thus yielded very similar species units (match ratio 0.991). Morphological examination of 100 mOTUs also confirmed good congruence with morphology (93% of mOTUs; > 99% of specimens) and revealed that 90% of the putative species belong to the neglected, megadiverse genus Megaselia. We demonstrate for one Megaselia species how the molecular data can guide the description of a new species (Megaselia sepsioides sp. nov.). Conclusions We document that one field site in Africa can be home to an estimated 1000 species of phorids and speculate that the Afrotropical diversity could exceed 200,000 species. We furthermore conclude that low-cost MinION sequencers are very suitable for reliable, rapid, and large-scale species discovery in hyperdiverse taxa. MinION sequencing could quickly reveal the extent of the unknown diversity and is especially suitable for biodiverse countries with limited access to capital-intensive sequencing facilities.


Sign in / Sign up

Export Citation Format

Share Document