scholarly journals The Pattern and Function of DNA Methylation in Fungal Plant Pathogens

2020 ◽  
Vol 8 (2) ◽  
pp. 227 ◽  
Author(s):  
Chang He ◽  
Zhanquan Zhang ◽  
Boqiang Li ◽  
Shiping Tian

To successfully infect plants and trigger disease, fungal plant pathogens use various strategies that are dependent on characteristics of their biology and genomes. Although pathogenic fungi are different from animals and plants in the genomic heritability, sequence feature, and epigenetic modification, an increasing number of phytopathogenic fungi have been demonstrated to share DNA methyltransferases (MTases) responsible for DNA methylation with animals and plants. Fungal plant pathogens predominantly possess four types of DNA MTase homologs, including DIM-2, DNMT1, DNMT5, and RID. Numerous studies have indicated that DNA methylation in phytopathogenic fungi mainly distributes in transposable elements (TEs), gene promoter regions, and the repetitive DNA sequences. As an important and heritable epigenetic modification, DNA methylation is associated with silencing of gene expression and transposon, and it is responsible for a wide range of biological phenomena in fungi. This review highlights the relevant reports and insights into the important roles of DNA methylation in the modulation of development, pathogenicity, and secondary metabolism of fungal plant pathogens. Recent evidences prove that there are massive links between DNA and histone methylation in fungi, and they commonly regulate fungal development and mycotoxin biosynthesis.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4461 ◽  
Author(s):  
Jiang Li ◽  
Caili Li ◽  
Shanfa Lu

Cytosine DNA methylation is highly conserved epigenetic modification involved in a wide range of biological processes in eukaryotes. It was established and maintained by cytosine-5 DNA methyltransferases (C5-MTases) in plants. Through genome-wide identification, eight putative SmC5-MTase genes were identified from the genome of Salvia miltiorrhiza, a well-known traditional Chinese medicine material and an emerging model medicinal plant. Based on conserved domains and phylogenetic analysis, eight SmC5-MTase genes were divided into four subfamilies, including MET, CMT, DRM and DNMT2. Genome-wide comparative analysis of the C5-MTase gene family in S. miltiorrhiza and Arabidopsis thaliana, including gene structure, sequence features, sequence alignment and conserved motifs, was carried out. The results showed conservation and divergence of the members of each subfamily in plants. The length of SmC5-MTase open reading frames ranges widely from 1,152 (SmDNMT2) to 5,034 bp (SmMET1). The intron number of SmC5-MTases varies between 7 (SmDRM1) and 20 (SmCMT1 and SmCMT2b). These features were similar to their counterparts from Arabidopsis. Sequence alignment and conserved motif analysis showed the existence of highly conserved and subfamily-specific motifs in the C5-MTases analyzed. Differential transcript abundance was detected for SmC5-MTases, implying genome-wide variance of DNA methylation in different organs and tissues. Transcriptome-wide analysis showed that the transcript levels of all SmC5-MTase genes was slightly changed under yeast extract and methyl jasmonate treatments. Six SmC5-MTases, including SmMET1, SmCMT1, SmCMT2a, SmCMT2b, SmCMT3 and SmDRM1, were salicylic acid-responsive, suggesting the involvement of SmC5-MTases in salicylic acid-dependent immunity. These results provide useful information for demonstrating the role of DNA methylation in bioactive compound biosynthesis and Dao-di herb formation in medicinal plants.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 365 ◽  
Author(s):  
Robin Raveau ◽  
Joël Fontaine ◽  
Anissa Lounès-Hadj Sahraoui

Naturally produced by aromatic plants, essential oils (EO) contain a wide range of volatile molecules, including mostly secondary metabolites, which possess several biological activities. Essential oils properties such as antioxidant, antimicrobial and anti-inflammatory activities are known for a long time and hence widely used in traditional medicines, cosmetics and food industries. However, despite their effects against many phytopathogenic fungi, oomycetes and bacteria as well as weeds, their use in agriculture remains surprisingly scarce. The purpose of the present review is to gather and discuss up-to-date biological activities of EO against weeds, plant pathogenic fungi, oomycetes and bacteria, reported in the scientific literature. Innovative methods, potentially valuable to improve the efficiency and reliability of EO, have been investigated. In particular, their use towards a more sustainable agriculture has been discussed, aiming at encouraging the use of alternative products to substitute synthetic pesticides to control weeds and plant diseases, without significantly affecting crop yields. An overview of the market and the recent advances on the regulation of these products as well as future challenges to promote their development and wider use in disease management programs is described. Because of several recent reviews on EO insecticidal properties, this topic is not covered in the present review.


2020 ◽  
Author(s):  
Chee Sian Kuan ◽  
Kee Peng Ng ◽  
Su Mei Yew ◽  
Hadiza Umar Meleh ◽  
Heng Fong Seow ◽  
...  

Abstract Background: Neoscytalidium dimidiatum and Bipolaris species are fungal plant pathogens that have been reported to cause human diseases. Recently, we have isolated numerous N. dimidiatum and Bipolaris species from the skin scrapings and nails of different patients. In this work, we have sequenced the genome of one strain of N. dimidiatum. The sequenced genome was compared to that of a previously reported Bipolaris papendorfii genome for a better understanding of their complex lifestyle and broad host-range pathogenicity. Results: Their 33-43 Mb genomes include 11,015-12,320 putative coding DNA sequences, of which 0.51-2.49 are predicted transposable elements. Analysis of secondary metabolism gene clusters revealed several melanin biosynthetic genes and genes involved in fungal iron uptake. The arsenal of CAZymes related to plants pathogenicity is comparable between the species, including genes involved in hemicellulose and pectin decomposition. Several important genes-encoding keratinolytic peptidases were identified in N. dimidiatum and B. papendorfii, reflecting their potential pathogenic role in causing skin and nail infections. In this study, additional information on the metabolic features of these two species, such as nutritional profiling, pH tolerance, and osmotolerant are revealed. Conclusions: The genomic characterization of N. dimidiatum and B. papendorfii provides the basis for the future functional studies to gain further insights as to what makes these fungi persist in plants and why they are pathogenic to humans.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3580
Author(s):  
Shatavisha Dasgupta ◽  
Patricia C. Ewing-Graham ◽  
Sigrid M. A. Swagemakers ◽  
Thierry P. P. van den Bosch ◽  
Peggy N. Atmodimedjo ◽  
...  

DNA methylation is the most widely studied mechanism of epigenetic modification, which can influence gene expression without alterations in DNA sequences. Aberrations in DNA methylation are known to play a role in carcinogenesis, and methylation profiling has enabled the identification of biomarkers of potential clinical interest for several cancers. For vulvar squamous cell carcinoma (VSCC), however, methylation profiling remains an under-studied area. We sought to identify differentially methylated genes (DMGs) in VSCC, by performing Infinium MethylationEPIC BeadChip (Illumina) array sequencing, on a set of primary VSCC (n = 18), and normal vulvar tissue from women with no history of vulvar (pre)malignancies (n = 6). Using a false-discovery rate of 0.05, beta-difference (Δβ) of ± 0.5, and CpG-island probes as cut-offs, 199 DMGs (195 hyper-methylated, 4 hypo-methylated) were identified for VSCC. Most of the hyper-methylated genes were found to be involved in transcription regulator activity, indicating that disruption of this process plays a vital role in VSCC development. The majority of VSCCs harbored amplifications of chromosomes 3, 8, and 9. We identified a set of DMGs in this exploratory, hypothesis-generating study, which we hope will facilitate epigenetic profiling of VSCCs. Prognostic relevance of these DMGs deserves further exploration in larger cohorts of VSCC and its precursor lesions.


2020 ◽  
Author(s):  
Jing Wei ◽  
Jia Cheng ◽  
Nicholas J Waddell ◽  
Zi-Jun Wang ◽  
Xiaodong Pang ◽  
...  

Abstract Emerging evidence suggests that epigenetic mechanisms regulate aberrant gene transcription in stress-associated mental disorders. However, it remains to be elucidated about the role of DNA methylation and its catalyzing enzymes, DNA methyltransferases (DNMTs), in this process. Here, we found that male rats exposed to chronic (2-week) unpredictable stress exhibited a substantial reduction of Dnmt3a after stress cessation in the prefrontal cortex (PFC), a key target region of stress. Treatment of unstressed control rats with DNMT inhibitors recapitulated the effect of chronic unpredictable stress on decreased AMPAR expression and function in PFC. In contrast, overexpression of Dnmt3a in PFC of stressed animals prevented the loss of glutamatergic responses. Moreover, the stress-induced behavioral abnormalities, including the impaired recognition memory, heightened aggression, and hyperlocomotion, were partially attenuated by Dnmt3a expression in PFC of stressed animals. Finally, we found that there were genome-wide DNA methylation changes and transcriptome alterations in PFC of stressed rats, both of which were enriched at several neural pathways, including glutamatergic synapse and microtubule-associated protein kinase signaling. These results have therefore recognized the potential role of DNA epigenetic modification in stress-induced disturbance of synaptic functions and cognitive and emotional processes.


2020 ◽  
Vol 21 (22) ◽  
pp. 8681
Author(s):  
Nicolò Orsoni ◽  
Francesca Degola ◽  
Luca Nerva ◽  
Franco Bisceglie ◽  
Giorgio Spadola ◽  
...  

As key players in biotic stress response of plants, jasmonic acid (JA) and its derivatives cover a specific and prominent role in pathogens-mediated signaling and hence are promising candidates for a sustainable management of phytopathogenic fungi. Recently, JA directed antimicrobial effects on plant pathogens has been suggested, supporting the theory of oxylipins as double gamers in plant-pathogen interaction. Based on these premises, six derivatives (dihydrojasmone and cis-jasmone, two thiosemicarbazonic derivatives and their corresponding complexes with copper) have been evaluated against 13 fungal species affecting various economically important herbaceous and woody crops, such as cereals, grapes and horticultural crops: Phaeoacremonium minimum, Neofusicoccum parvum, Phaeomoniella chlamydospora, Fomitiporia mediterranea, Fusarium poae, F. culmorum, F. graminearum, F. oxysporum f. sp. lactucae,F. sporotrichioides, Aspergillus flavus, Rhizoctonia solani,Sclerotinia spp. and Verticillium dahliae. The biological activity of these compounds was assessed in terms of growth inhibition and, for the two mycotoxigenic species A. flavus and F. sporotrichioides, also in terms of toxin containment. As expected, the inhibitory effect of molecules greatly varied amongst both genera and species; cis-jasmone thiosemicarbazone in particular has shown the wider range of effectiveness. However, our results show that thiosemicarbazones derivatives are more effective than the parent ketones in limiting fungal growth and mycotoxins production, supporting possible applications for the control of pathogenic fungi.


2018 ◽  
Vol 19 (10) ◽  
pp. 3106 ◽  
Author(s):  
Kuniyasu Soda

Recent investigations have revealed that changes in DNA methylation status play an important role in aging-associated pathologies and lifespan. The methylation of DNA is regulated by DNA methyltransferases (DNMT1, DNMT3a, and DNMT3b) in the presence of S-adenosylmethionine (SAM), which serves as a methyl group donor. Increased availability of SAM enhances DNMT activity, while its metabolites, S-adenosyl-l-homocysteine (SAH) and decarboxylated S-adenosylmethionine (dcSAM), act to inhibit DNMT activity. SAH, which is converted from SAM by adding a methyl group to cytosine residues in DNA, is an intermediate precursor of homocysteine. dcSAM, converted from SAM by the enzymatic activity of adenosylmethionine decarboxylase, provides an aminopropyl group to synthesize the polyamines spermine and spermidine. Increased homocysteine levels are a significant risk factor for the development of a wide range of conditions, including cardiovascular diseases. However, successful homocysteine-lowering treatment by vitamins (B6, B12, and folate) failed to improve these conditions. Long-term increased polyamine intake elevated blood spermine levels and inhibited aging-associated pathologies in mice and humans. Spermine reversed changes (increased dcSAM, decreased DNMT activity, aberrant DNA methylation, and proinflammatory status) induced by the inhibition of ornithine decarboxylase. The relation between polyamine metabolism, one-carbon metabolism, DNA methylation, and the biological mechanism of spermine-induced lifespan extension is discussed.


2021 ◽  
Author(s):  
Lulu Qiao ◽  
Chi Lan ◽  
Luca Capriotti ◽  
Audrey Ah-Fong ◽  
Jonatan Nino Sanchez ◽  
...  

AbstractRecent discoveries show that fungi can take up environmental RNA, which can then silence fungal genes through environmental RNA interference. This discovery prompted the development of Spray-Induced Gene Silencing (SIGS) for plant disease management. In this study, we aimed to determine the efficacy of SIGS across a variety of eukaryotic microbes. We first examined the efficiency of RNA uptake in multiple pathogenic and non-pathogenic fungi, and an oomycete pathogen. We observed efficient double-stranded RNA (dsRNA) uptake in the fungal plant pathogens Botrytis cinerea, Sclerotinia sclerotiorum, Rhizoctonia solani, Aspergillus niger, and Verticillium dahliae, but no uptake in Colletotrichum gloeosporioides, and weak uptake in a beneficial fungus, Trichoderma virens. For the oomycete plant pathogen, Phytophthora infestans, RNA uptake was limited, and varied across different cell types and developmental stages. Topical application of dsRNA targeting virulence-related genes in the pathogens with high RNA uptake efficiency significantly inhibited plant disease symptoms, whereas the application of dsRNA in pathogens with low RNA uptake efficiency did not suppress infection. Our results have revealed that dsRNA uptake efficiencies vary across eukaryotic microbe species and cell types. The success of SIGS for plant disease management can largely be determined by the pathogen RNA uptake efficiency.


2019 ◽  
Author(s):  
Luis Busto-Moner ◽  
Julien Morival ◽  
Arjang Fahim ◽  
Zachary Reitz ◽  
Timothy L. Downing ◽  
...  

AbstractDNA methylation is a heritable epigenetic modification that plays an essential role in mammalian development. Genomic methylation patterns are dynamically maintained, with DNA methyltransferases mediating inheritance of methyl marks onto nascent DNA over cycles of replication. A recently developed experimental technique employing immunoprecipitation of bromodeoxyuridine labeled nascent DNA followed by bisulfite sequencing (Repli-BS) measures post-replication temporal evolution of cytosine methylation, thus enabling genome-wide monitoring of methylation maintenance. In this work, we combine statistical analysis and stochastic mathematical modeling to analyze Repli-BS data from human embryonic stem cells. We estimate site-specific kinetic rate constants for the restoration of methyl marks on >10 million uniquely mapped cytosines within the CpG (cytosine-phosphate-guanine) dinucleotide context across the genome using Maximum Likelihood Estimation. We find that post-replication remethylation rate constants span approximately two orders of magnitude, with half-lives of per-site recovery of steady-state methylation levels ranging from shorter than ten minutes to five hours and longer. Furthermore, we find that kinetic constants of maintenance methylation are correlated among neighboring CpG sites. Stochastic mathematical modeling provides insight to the biological mechanisms underlying the inference results, suggesting that enzyme processivity and/or collaboration can produce the observed kinetic correlations. Our combined statistical/mathematical modeling approach expands the utility of genomic datasets and disentangles heterogeneity in methylation patterns arising from replication-associated temporal dynamics versus stable cell-to-cell differences.


Marine Drugs ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. 600
Author(s):  
Hillary Righini ◽  
Ornella Francioso ◽  
Michele Di Foggia ◽  
Antera Martel Quintana ◽  
Roberta Roberti

Phycobiliproteins (PBPs) are proteins of cyanobacteria and some algae such as rhodophytes. They have antimicrobial, antiviral, antitumor, antioxidative, and anti-inflammatory activity at the human level, but there is a lack of knowledge on their antifungal activity against plant pathogens. We studied the activity of PBPs extracted from Arthrospiraplatensis and Hydropuntiacornea against Botrytiscinerea, one of the most important worldwide plant-pathogenic fungi. PBPs were characterized by using FT-IR and FT-Raman in order to investigate their structures. Their spectra differed in the relative composition in the amide bands, which were particularly strong in A. platensis. PBP activity was tested on tomato fruits against gray mold disease, fungal growth, and spore germination at different concentrations (0.3, 0.6, 1.2, 2.4, and 4.8 mg/mL). Both PBPs reduced fruit gray mold disease. A linear dose–response relationship was observed for both PBPs against disease incidence and H. cornea against disease severity. Pathogen mycelial growth and spore germination were reduced significantly by both PBPs. In conclusion, PBPs have the potential for being also considered as natural compounds for the control of fungal plant pathogens in sustainable agriculture.


Sign in / Sign up

Export Citation Format

Share Document