scholarly journals Hot in Cold: Microbial Life in the Hottest Springs in Permafrost

2020 ◽  
Vol 8 (9) ◽  
pp. 1308
Author(s):  
Tatiana V. Kochetkova ◽  
Stepan V. Toshchakov ◽  
Kseniya S. Zayulina ◽  
Alexander G. Elcheninov ◽  
Daria G. Zavarzina ◽  
...  

Chukotka is an arctic region located in the continuous permafrost zone, but thermal springs are abundant there. In this study, for the first time, the microbial communities of the Chukotka hot springs (CHS) biofilms and sediments with temperatures 54–94 °C were investigated and analyzed by NGS sequencing of 16S rRNA gene amplicons. In microbial mats (54–75 °C), phototrophic bacteria of genus Chloroflexus dominated (up to 89% of all prokaryotes), while Aquificae were the most numerous at higher temperatures in Fe-rich sediments and filamentous “streamers” (up to 92%). The electron donors typical for Aquificae, such as H2S and H2, are absent or present only in trace amounts, and the prevalence of Aquificae might be connected with their ability to oxidize the ferrous iron present in CHS sediments. Armatimonadetes, Proteobacteria, Deinococcus-Thermus, Dictyoglomi, and Thermotogae, as well as uncultured bacteria (candidate divisions Oct-Spa1-106, GAL15, and OPB56), were numerous, and Cyanobacteria were present in low numbers. Archaea (less than 8% of the total community of each tested spring) belonged to Bathyarchaeota, Aigarchaeota, and Thaumarchaeota. The geographical location and the predominantly autotrophic microbial community, built on mechanisms other than the sulfur cycle-based ones, make CHS a special and unique terrestrial geothermal ecosystem.

2020 ◽  
Vol 70 (11) ◽  
pp. 5701-5710 ◽  
Author(s):  
Mohit Kumar Saini ◽  
Weng ChihChe ◽  
Nathan Soulier ◽  
Aswathy Sebastian ◽  
Istvan Albert ◽  
...  

A novel thermophilic phototrophic purple sulphur bacterium was isolated from microbial mats (56 °C) at Nakabusa hot springs, Nagano prefecture, Japan. Cells were motile, rod-shaped, stain Gram-negative and stored sulphur globules intracellularly. Bacteriochlorophyll a and carotenoids of the normal spirilloxanthin series were the major pigments. Dense liquid cultures were red in colour. Strain No.7T was able to grow photoautotrophically using sulfide, thiosulfate, sulfite and hydrogen (in the presence of sulfide) as electron donors and bicarbonate as the sole carbon source. Optimum growth occurred under anaerobic conditions in the light at 50 °C (range, 40–56 °C) and pH 7.2 (range, pH 7–8). Major fatty acids were C16 : 0 (46.8 %), C16 : 1 ω7c (19.9 %), C18 : 1 ω7c (21.1 %), C14 : 0 (4.6 %) and C18 : 0 (2.4 %). The polar lipid profile showed phosphatidylglycerol and unidentified aminophospholipids to be the major lipids. The only quinone detected was ubiquinone-8. 16S rRNA gene sequence comparisons indicated that the novel bacterium is only distantly related to Thermochromatium tepidum with a nucleotide identity of 90.4 %. The phylogenetic analysis supported the high novelty of strain No.7T with a long-branching phylogenetic position within the Chromatiaceae next to Thermochromatium tepidum . The genome comprised a circular chromosome of 2.99 Mbp (2 989 870 bp), included no plasmids and had a DNA G+C content of 61.2 mol%. Polyphasic taxonomic analyses of the isolate suggested strain No.7T is a novel genus within the Chromatiaceae . The proposed genus name of the second truly thermophilic purple sulphur bacterium is Caldichromatium gen. nov. with the type species Caldichromatium japonicum sp. nov. (DSM 110881=JCM 39101).


2013 ◽  
Vol 10 (4) ◽  
pp. 2439-2450 ◽  
Author(s):  
J. DiRuggiero ◽  
J. Wierzchos ◽  
C. K. Robinson ◽  
T. Souterre ◽  
J. Ravel ◽  
...  

Abstract. Efforts in searching for microbial life in the driest part of Atacama Desert, Chile, revealed a small number of lithic habitats that can be considered as environmental refuges for life. In this study, we describe for the first time chasmoendolithic colonisation of fissures and cracks of rhyolite-gypsum and calcite rocks collected in the hyper-arid zone of the desert. The use of high-throughput sequencing revealed that the Atacama rock communities comprised a few dominant phylotypes and a number of less abundant taxa representing the majority of the total community diversity. The chasmoendolithic communities were dominated by Chroococcidiopsis species cyanobacteria and supported a number of heterotrophic bacterial lineages. Micro-climate data and geomorphic analysis of the mineral substrates suggested higher water availability in the calcite rocks in the form of enhanced water retention in the complex network of cracks and fissures of these rocks as well as increased occurrence of liquid water in the form of dewfall. These characteristics were associated with a diverse community of phototrophic and heterotrophic bacteria in the calcite chasmoendolithic ecosystem. This study is another example of the diversity of adaptive strategies at the limit for life and illustrates that rock colonisation is controlled by a complex set of factors.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12655
Author(s):  
Elena Vortsepneva ◽  
Pierre Chevaldonné ◽  
Alexandra Klyukina ◽  
Elizaveta Naduvaeva ◽  
Christiane Todt ◽  
...  

The first cave-dwelling Solenogastres—marine shell-less worm-like mollusks—were sampled from Mediterranean marine caves floor silt in the Marseille area. The mollusks were 1.5 mm in length, had a transparent body with shiny spicules and appear to represent a new Tegulaherpia species. Electron microscopy revealed a high number of microbial cells, located on the surface of the spicules as well as in the cuticle of Tegulaherpia sp. The observed microbial cells varied in morphology and were unequally distributed through the cuticle, reaching a highest density on the dorsal and lateral sides and being practically absent on the ventral side. Next Generation Sequencing (NGS) of V4 region of 16S rRNA gene amplicons, obtained from the DNA samples of whole bodies of Tegulaherpia sp. revealed three dominating microorganisms, two of which were bacteria of Bacteroidetes and Nitrospirae phyla, while the third one represented archaea of Thaumarchaeota phylum. The Operational Taxonomic Unit (OTU), affiliated with Bacteroidetes was an uncultured bacteria of the family Saprospiraceae (93–95% of Bacteroidetes and 25–44% of the total community, depending on sample), OTU, affiliated with Nitrospirae belonged to the genus Nitrospira (8–30% of the community), while the thaumarchaeal OTU was classified as Candidatus Nitrosopumilus (11–15% of the community). Members of these three microbial taxa are known to form associations with various marine animals such as sponges or snails where they contribute to nitrogen metabolism or the decomposition of biopolymers. A similar role is assumed to be played by the microorganisms associated with Tegulaherpia sp.


2008 ◽  
Vol 74 (20) ◽  
pp. 6223-6229 ◽  
Author(s):  
Koji Mori ◽  
Michinari Sunamura ◽  
Katsunori Yanagawa ◽  
Jun-ichiro Ishibashi ◽  
Youko Miyoshi ◽  
...  

ABSTRACT The phylogenetic group termed OP5 was originally discovered in the Yellowstone National Park hot spring and proposed as an uncultured phylum; the group was afterwards analyzed by applying culture-independent approaches. Recently, a novel thermophilic chemoheterotrophic filamentous bacterium was obtained from a hot spring in Japan that was enriched through various isolation procedures. Phylogenetic analyses of the isolate have revealed that it is closely related to the OP5 phylum that has mainly been constructed with the environmental clones retrieved from thermophilic and mesophilic anaerobic environments. It appears that the lineage is independent at the phylum level in the domain Bacteria. Therefore, we designed a primer set for the 16S rRNA gene to specifically target the OP5 phylum and performed quantitative field analysis by using the real-time PCR method. Thus, the 16S rRNA gene of the OP5 phylum was detected in some hot-spring samples with the relative abundance ranging from 0.2% to 1.4% of the prokaryotic organisms detected. The physiology of the above-mentioned isolate and the related environmental clones indicated that they are scavengers contributing to the sulfur cycle in nature.


Biomolecules ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 98
Author(s):  
Lidia Błaszczyk ◽  
Agnieszka Waśkiewicz ◽  
Karolina Gromadzka ◽  
Katarzyna Mikołajczak ◽  
Jerzy Chełkowski

The occurrence and diversity of Lecanicillium and Sarocladium in maize seeds and their role in this cereal are poorly understood. Therefore, the present study aimed to investigate Sarocladium and Lecanicillium communities found in endosphere of maize seeds collected from fields in Poland and their potential to form selected bioactive substances. The sequencing of the internally transcribed spacer regions 1 (ITS 1) and 2 (ITS2) and the large-subunit (LSU, 28S) of the rRNA gene cluster resulted in the identification of 17 Sarocladium zeae strains, three Sarocladium strictum and five Lecanicillium lecanii isolates. The assay on solid substrate showed that S. zeae and S. strictum can synthesize bassianolide, vertilecanin A, vertilecanin A methyl ester, 2-decenedioic acid and 10-hydroxy-8-decenoic acid. This is also the first study revealing the ability of these two species to produce beauvericin and enniatin B1, respectively. Moreover, for the first time in the present investigation, pyrrocidine A and/or B have been annotated as metabolites of S. strictum and L. lecanii. The production of toxic, insecticidal and antibacterial compounds in cultures of S. strictum, S. zeae and L. lecanii suggests the requirement to revise the approach to study the biological role of fungi inhabiting maize seeds.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 814
Author(s):  
Münir Aktaş ◽  
Sezayi Özübek ◽  
Mehmet Can Uluçeşme

Anaplasma phagocytophilum causes tick-borne fever in small ruminants. Recently, novel Anaplasma variants related to A. phagocytophilum have been reported in ruminants from Tunisia, Italy, South Korea, Japan, and China. Based on 16S rRNA and groEL genes and sequencing, we screened the frequency of A. phagocytophilum and related variants in 433 apparently healthy small ruminants in Turkey. Anaplasma spp. overall infection rates were 27.9% (121/433 analyzed samples). The frequency of A. phagocytophilum and A. phagocytophilum-like 1 infections was 1.4% and 26.5%, respectively. No A. phagocytophilum-like 2 was detected in the tested animals. The prevalence of Anaplasma spp. was comparable in species, and no significant difference was detected between sheep and goats, whereas the prevalence significantly increased with tick infestation. Sequencing confirmed PCR-RFLP data and showed the presence of A. phagocytophilum and A. phagocytophilum-like-1 variant in the sampled animals. Phylogeny-based on 16S rRNA gene revealed the A. phagocytophilum-like 1 in a separate clade together with the previous isolates detected in small ruminants and ticks. In this work, A. phagocytophilum-like 1 has been detected for the first time in sheep and goats from Turkey. This finding revealed that the variant should be considered in the diagnosis of caprine and ovine anaplasmosis.


Polar Biology ◽  
2021 ◽  
Author(s):  
Eleanor E. Jackson ◽  
Ian Hawes ◽  
Anne D. Jungblut

AbstractThe undulating ice of the McMurdo Ice Shelf, Southern Victoria Land, supports one of the largest networks of ice-based, multiyear meltwater pond habitats in Antarctica, where microbial mats are abundant and contribute most of the biomass and biodiversity. We used 16S rRNA and 18S rRNA gene high-throughput sequencing to compare variance of the community structure in microbial mats within and between ponds with different salinities and pH. Proteobacteria and Cyanobacteria were the most abundant phyla, and composition at OTU level was highly specific for the meltwater ponds with strong community sorting along the salinity gradient. Our study provides the first detailed evaluation of eukaryote communities for the McMurdo Ice Shelf using the 18S rRNA gene. They were dominated by Ochrophyta, Chlorophyta and Ciliophora, consistent with previous microscopic analyses, but many OTUs belonging to less well-described heterotrophic protists from Antarctic ice shelves were also identified including Amoebozoa, Rhizaria and Labyrinthulea. Comparison of 16S and 18S rRNA gene communities showed that the Eukaryotes had lower richness and greater similarity between ponds in comparison with Bacteria and Archaea communities on the McMurdo Ice shelf. While there was a weak correlation between community dissimilarity and geographic distance, the congruity of microbial assemblages within ponds, especially for Bacteria and Archaea, implies strong habitat filtering in ice shelf meltwater pond ecosystems, especially due to salinity. These findings help to understand processes that are important in sustaining biodiversity and the impact of climate change on ice-based aquatic habitats in Antarctica.


2021 ◽  
Vol 9 (7) ◽  
pp. 1473
Author(s):  
Ani Saghatelyan ◽  
Armine Margaryan ◽  
Hovik Panosyan ◽  
Nils-Kåre Birkeland

The microbial diversity of high-altitude geothermal springs has been recently assessed to explore their biotechnological potential. However, little is known regarding the microbiota of similar ecosystems located on the Armenian Highland. This review summarizes the known information on the microbiota of nine high-altitude mineralized geothermal springs (temperature range 25.8–70 °C and pH range 6.0–7.5) in Armenia and Nagorno-Karabakh. All these geothermal springs are at altitudes ranging from 960–2090 m above sea level and are located on the Alpide (Alpine–Himalayan) orogenic belt, a seismically active region. A mixed-cation mixed-anion composition, with total mineralization of 0.5 mg/L, has been identified for these thermal springs. The taxonomic diversity of hot spring microbiomes has been examined using culture-independent approaches, including denaturing gradient gel electrophoresis (DGGE), 16S rRNA gene library construction, 454 pyrosequencing, and Illumina HiSeq. The bacterial phyla Proteobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes are the predominant life forms in the studied springs. Archaea mainly include the phyla Euryarchaeota, Crenarchaeota, and Thaumarchaeota, and comprise less than 1% of the prokaryotic community. Comparison of microbial diversity in springs from Karvachar with that described for other terrestrial hot springs revealed that Proteobacteria, Bacteroidetes, Actinobacteria, and Deinococcus–Thermus are the common bacterial groups in terrestrial hot springs. Contemporaneously, specific bacterial and archaeal taxa were observed in different springs. Evaluation of the carbon, sulfur, and nitrogen metabolism in these hot spring communities has revealed diversity in terms of metabolic activity. Temperature seems to be an important factor in shaping the microbial communities of these springs. Overall, the diversity and richness of the microbiota are negatively affected by increasing temperature. Other abiotic factors, including pH, mineralization, and geological history, also impact the structure and function of the microbial community. More than 130 bacterial and archaeal strains (Bacillus, Geobacillus, Parageobacillus, Anoxybacillus, Paenibacillus, Brevibacillus Aeribacillus, Ureibacillus, Thermoactinomyces, Sporosarcina, Thermus, Rhodobacter, Thiospirillum, Thiocapsa, Rhodopseudomonas, Methylocaldum, Desulfomicrobium, Desulfovibrio, Treponema, Arcobacter, Nitropspira, and Methanoculleus) have been reported, some of which may be representative of novel species (sharing 91–97% sequence identity with their closest matches in GenBank) and producers of thermozymes and biomolecules with potential biotechnological applications. Whole-genome shotgun sequencing of T. scotoductus K1, as well as of the potentially new Treponema sp. J25 and Anoxybacillus sp. K1, were performed. Most of the phyla identified by 16S rRNA were also identified using metagenomic approaches. Detailed characterization of thermophilic isolates indicate the potential of the studied springs as a source of biotechnologically valuable microbes and biomolecules.


2008 ◽  
Vol 74 (10) ◽  
pp. 3198-3215 ◽  
Author(s):  
Enoma O. Omoregie ◽  
Vincent Mastalerz ◽  
Gert de Lange ◽  
Kristina L. Straub ◽  
Andreas Kappler ◽  
...  

ABSTRACT In this study we determined the composition and biogeochemistry of novel, brightly colored, white and orange microbial mats at the surface of a brine seep at the outer rim of the Chefren mud volcano. These mats were interspersed with one another, but their underlying sediment biogeochemistries differed considerably. Microscopy revealed that the white mats were granules composed of elemental S filaments, similar to those produced by the sulfide-oxidizing epsilonproteobacterium “Candidatus Arcobacter sulfidicus.” Fluorescence in situ hybridization indicated that microorganisms targeted by a “Ca. Arcobacter sulfidicus”-specific oligonucleotide probe constituted up to 24% of the total the cells within these mats. Several 16S rRNA gene sequences from organisms closely related to “Ca. Arcobacter sulfidicus” were identified. In contrast, the orange mat consisted mostly of bright orange flakes composed of empty Fe(III) (hydr)oxide-coated microbial sheaths, similar to those produced by the neutrophilic Fe(II)-oxidizing betaproteobacterium Leptothrix ochracea. None of the 16S rRNA gene sequences obtained from these samples were closely related to sequences of known neutrophilic aerobic Fe(II)-oxidizing bacteria. The sediments below both types of mats showed relatively high sulfate reduction rates (300 nmol·cm−3·day−1) partially fueled by the anaerobic oxidation of methane (10 to 20 nmol·cm−3·day−1). Free sulfide produced below the white mat was depleted by sulfide oxidation within the mat itself. Below the orange mat free Fe(II) reached the surface layer and was depleted in part by microbial Fe(II) oxidation. Both mats and the sediments underneath them hosted very diverse microbial communities and contained mineral precipitates, most likely due to differences in fluid flow patterns.


Sign in / Sign up

Export Citation Format

Share Document