scholarly journals Whole Genome Sequencing Characterization of HEV3-e and HEV3-f Subtypes among the Wild Boar Population in the Abruzzo Region, Italy: First Report

2020 ◽  
Vol 8 (9) ◽  
pp. 1393
Author(s):  
Giuseppe Aprea ◽  
Silvia Scattolini ◽  
Daniela D’Angelantonio ◽  
Alexandra Chiaverini ◽  
Valeria Di Lollo ◽  
...  

Hepatitis E virus (HEV) is an emergent zoonotic pathogen, causing worldwide acute and chronic hepatitis in humans. HEV comprises eight genotypes and several subtypes. HEV genotypes 3 and 4 (HEV3 and HEV4) are zoonotic. In Italy, the most part of HEV infections (80%) is due to autochthonous HEV3 circulation of the virus, and the key role played by wild animals is generally accepted. Abruzzo is an Italian region officially considered an HEV “hot spot”, with subtype HEV3-c being up to now the only one reported among wild boars. During the year 2018–2019, a group of wild boars in Abruzzo were screened for HEV; positive RNA liver samples were subjected to HEV characterization by using the whole genome sequencing (WGS) approach methodology. This represents the first report about the detection of HEV-3 subtypes e and f in the wild boar population in this area. Since in Italy human infections from HEV 3-e and f have been associated with pork meat consumption, our findings deserve more in-depth analysis with the aim of evaluating any potential correlation between wild animals, the pork chain production and HEV human infections.

2018 ◽  
Vol 6 (19) ◽  
Author(s):  
Marie Reinhardt ◽  
Jens A. Hammerl ◽  
Stefan Hertwig

ABSTRACT We report here the draft genome sequences of 10 Yersinia pseudotuberculosis isolates recovered from tonsils of wild boars hunted between 2015 and 2016 in Germany. Whole-genome sequencing and bioinformatic analyses were performed to assess the diversity of Y. pseudotuberculosis , which may result in human infections caused by the consumption of game meat.


Author(s):  
Carla Palacios-Gorba ◽  
Alexandra Moura ◽  
Alexandre Leclercq ◽  
Ángel Gómez-Martín ◽  
Jesús Gomis ◽  
...  

Listeria monocytogenes (Lm) is a major human and animal foodborne pathogen. However, data from environmental reservoirs remain scarce. Here, we used whole genome sequencing to characterize Listeria spp. isolates recovered over one year from wild animals in their natural habitats in Spain. Three different Listeria spp. [Lm (n=19), Listeria ivanovii subsp. londoniensis (Liv, n=4) and Listeria innocua (Lin, n=3)] were detected in 23 animal tonsils (9 deer, 14 wild boars) and 2 feeding throughs. No Listeria spp. was detected in feces. Lm was detected in tonsils of 44.4% (8 out of 18) deer and 40.7% (11 out of 27) wild boars. Lm isolates belonged to 3 different cgMLST types (CTs) of 3 distinct sublineages (SL1, SL387 and SL155) from lineages I and II. While cgMLST type L1-SL1-ST1-CT5279 (IVb, CC1) occurred only in one animal, types L1-SL387-ST388-CT5239 (IVb, CC388) and L2-SL155-ST155-CT1170 (IIa, CC155) were retrieved from multiple animals. In addition, L1-SL387-ST388-CT5239 (IVb, CC388) isolates were collected 1 year apart, revealing its long-term occurrence within the animal population and/or environmental reservoir. The presence of identical Lm strains in deer and wild boars suggest contamination from a common food or environmental source, although interhost transmission cannot be excluded. Pathogenicity islands were present in 100% (LIPI-1), 5% (LIPI-3) and 79% (LIPI-4) of the Lm isolates and all Lm lineage II isolates (n=3) carried SSI-1 stress islands. This study highlights the need for monitoring Lm environmental contamination and the importance of tonsils as a possible Lm intra-host reservoir. Importance: Listeria monocytogenes (Lm) is a foodborne bacterial pathogen responsible for listeriosis. Whole genome sequencing has been extensively used in public health and food industries to characterize circulating Listeria isolates, but genomic data on isolates occurring in natural environments and wild animals is still scarce. Here, we show that wild animals carry pathogenic Listeria and that the same genotypes can be found at different time points in different host species. This work highlights the need of Listeria spp. monitoring of environmental contamination and the importance of tonsils as a possible Lm intra-host reservoir.


2021 ◽  
Vol 9 (8) ◽  
pp. 1585
Author(s):  
Ana C. Reis ◽  
Liliana C. M. Salvador ◽  
Suelee Robbe-Austerman ◽  
Rogério Tenreiro ◽  
Ana Botelho ◽  
...  

Classical molecular analyses of Mycobacterium bovis based on spoligotyping and Variable Number Tandem Repeat (MIRU-VNTR) brought the first insights into the epidemiology of animal tuberculosis (TB) in Portugal, showing high genotypic diversity of circulating strains that mostly cluster within the European 2 clonal complex. Previous surveillance provided valuable information on the prevalence and spatial occurrence of TB and highlighted prevalent genotypes in areas where livestock and wild ungulates are sympatric. However, links at the wildlife–livestock interfaces were established mainly via classical genotype associations. Here, we apply whole genome sequencing (WGS) to cattle, red deer and wild boar isolates to reconstruct the M. bovis population structure in a multi-host, multi-region disease system and to explore links at a fine genomic scale between M. bovis from wildlife hosts and cattle. Whole genome sequences of 44 representative M. bovis isolates, obtained between 2003 and 2015 from three TB hotspots, were compared through single nucleotide polymorphism (SNP) variant calling analyses. Consistent with previous results combining classical genotyping with Bayesian population admixture modelling, SNP-based phylogenies support the branching of this M. bovis population into five genetic clades, three with apparent geographic specificities, as well as the establishment of an SNP catalogue specific to each clade, which may be explored in the future as phylogenetic markers. The core genome alignment of SNPs was integrated within a spatiotemporal metadata framework to further structure this M. bovis population by host species and TB hotspots, providing a baseline for network analyses in different epidemiological and disease control contexts. WGS of M. bovis isolates from Portugal is reported for the first time in this pilot study, refining the spatiotemporal context of TB at the wildlife–livestock interface and providing further support to the key role of red deer and wild boar on disease maintenance. The SNP diversity observed within this dataset supports the natural circulation of M. bovis for a long time period, as well as multiple introduction events of the pathogen in this Iberian multi-host system.


2016 ◽  
Vol 4 (6) ◽  
Author(s):  
Claudia Carolina Carbonari ◽  
Nahuel Fittipaldi ◽  
Sarah Teatero ◽  
Taryn B. T. Athey ◽  
Luis Pianciola ◽  
...  

Shiga toxin-producing Escherichia coli strains are worldwide associated with sporadic human infections and outbreaks. In this work, we report the availability of high-quality draft whole-genome sequences for 19 O157:H7 strains isolated in Argentina.


2020 ◽  
Vol 8 (6) ◽  
pp. 855 ◽  
Author(s):  
Alexandra Irrgang ◽  
Natalie Pauly ◽  
Bernd-Alois Tenhagen ◽  
Mirjam Grobbel ◽  
Annemarie Kaesbohrer ◽  
...  

Resistance to carbapenems is a severe threat to human health. These last resort antimicrobials are indispensable for the treatment of severe human infections with multidrug-resistant Gram-negative bacteria. In accordance with their increasing medical impact, carbapenemase-producing Enterobacteriaceae (CPE) might be disseminated from colonized humans to non-human reservoirs (i.e., environment, animals, food). In Germany, the occurrence of CPE in livestock and food has been systematically monitored since 2016. In the 2019 monitoring, an OXA-48-producing E. coli (19-AB01443) was recovered from a fecal sample of a fattening pig. Phenotypic resistance was confirmed by broth microdilution and further characterized by PFGE, conjugation, and combined short-/long-read whole genome sequencing. This is the first detection of this resistance determinant in samples from German meat production. Molecular characterization and whole-genome sequencing revealed that the blaOXA-48 gene was located on a common pOXA-48 plasmid-prototype. This plasmid-type seems to be globally distributed among various bacterial species, but it was frequently associated with clinical Klebsiella spp. isolates. Currently, the route of introduction of this plasmid/isolate combination into the German pig production is unknown. We speculate that due to its strong correlation with human isolates a transmission from humans to livestock has occurred.


2021 ◽  
Author(s):  
Dario Fernández Do Porto ◽  
Johana Monteserin ◽  
Josefina Campos ◽  
Ezequiel J Sosa ◽  
Mario Matteo ◽  
...  

Abstract BackgroundWhole-genome sequencing has shown that the Mycobacterium tuberculosis infection process can be more heterogeneous than previously thought. Compartmentalized infections, exogenous reinfections, and microevolution are manifestations of this clonal complexity. The analysis of the mechanisms causing the microevolution —the genetic variability of M. tuberculosis at short time scales— of a parental strain into clonal variants with a patient is a relevant issue that has not been yet completely addressed. To our knowledge, a whole genome sequence microevolution analysis in a single patient with inadequate adherence to treatment has not been previously reported.Case Presentations In this work, we applied whole genome sequencing for a more in-depth analysis of the microevolution of a parental Mycobacterium tuberculosis strain into clonal variants within a patient with poor treatment compliance in Argentina. We analyzed the whole-genome sequence of 8 consecutive Mycobacterium. tuberculosis isolates obtained from a patient within 57-month of intermittent therapy. Nineteen mutations (9 short-term, 10 fixed variants) emerged, most of them associated with drug resistance. The first isolate was already resistant to isoniazid, rifampicin, and streptomycin, thereafter the strain developed resistance to fluoroquinolones and pyrazinamide. Surprisingly, isolates remained susceptible to the pro-drug ethionamide after acquiring a frameshift mutation in ethA, a gene required for its activation. We also found a novel variant, (T-54G), in the 5' untranslated region of whiB7 (T-54G), a region allegedly related to kanamycin resistance. Notably, discrepancies between canonical and phage-based susceptibility testing to kanamycin were previously found for the isolate harboring this mutation. In our patience, microevolution was mainly driven by drug selective pressure. Rare short-term mutations fixed together with resistance-conferring mutations during therapy.ConclusionsThis report highlights the relevance of whole-genome sequencing in the clinic for characterization of pre-XDR and MDR resistance profile, particularly in patients with incomplete and/or intermittent treatment.


2021 ◽  
Author(s):  
Laura Pérez-Lago ◽  
Helena Martinez Lozano ◽  
Jose Antonio pajares Diaz ◽  
Arantxa Diaz Gomez ◽  
Marina Machado ◽  
...  

Abstract SARS-CoV-2 nosocomial outbreaks in the first COVID-19 wave were likely associated to a shortage of personal protective equipment and scare indications on control measures. Having covered these limitations, updates on current SARS-CoV-2 nosocomial outbreaks are required. We carried out an in-depth analysis of a 27-day nosocomial outbreak in a gastroenterology ward in our hospital, potentially involving 15 patients and three healthcare workers. Patients had stayed in one of three neighbouring rooms in the ward. The severity of the infections in six of the cases and a high fatality rate suggested the possible involvement of a single virulent strain persisting in those rooms. Whole genome sequencing of the strains from 12 patients and one healthcare worker revealed an unexpected complexity. Five different SARS-CoV-2 strains were identified, two infecting a single patient each, ruling out their relationship with the outbreak; the remaining three strains were involved in three independent overlapping limited transmission clusters with three, three, and five cases. Whole genome sequencing was key to understand the complexity of this outbreak.


2019 ◽  
Vol 82 (8) ◽  
pp. 1398-1404 ◽  
Author(s):  
RENATE BOSS ◽  
JOERG HUMMERJOHANN

ABSTRACT Shiga toxin–producing Escherichia coli (STEC) strains are often found in food and cause human infections. Although STEC O157:H7 is most often responsible for human disease, various non-O157 subtypes have caused individual human infections or outbreaks. The importance of STEC serogroup typing is decreasing while detection of virulence gene patterns has become more relevant. Whole genome sequencing (WGS) reveals the entire spectrum of pathogen information, such as toxin variant, serotype, sequence type, and virulence factors. Flour has not been considered as a vector for STEC; however, this product has been associated with several STEC outbreaks in the last decade. Flour is a natural product, and milling does not include a germ-reducing step. Flour is rarely eaten raw, but the risks associated with the consumption of unbaked dough are probably underestimated. The aim of this study was to determine the prevalence of STEC in flour samples (n = 93) collected from Swiss markets and to fully characterize the isolates by PCR assay and WGS. The prevalence of STEC in these flour samples was 10.8% as indicated by PCR, and a total of 10 STEC strains were isolated (two flour samples were positive for two STEC subtypes). We found one stx2-positve STEC isolate belonging to the classic serogroups frequently associated with outbreaks that could potentially cause severe disease. However, we also found several other common or less common STEC subtypes with diverse virulence patterns. Our results reveal the benefits of WGS as a characterization tool and that flour is a potentially and probably underestimated source for STEC infections in humans.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Darío A. Fernandez Do Porto ◽  
Johana Monteserin ◽  
Josefina Campos ◽  
Ezequiel J. Sosa ◽  
Mario Matteo ◽  
...  

Abstract Background Whole-genome sequencing has shown that the Mycobacterium tuberculosis infection process can be more heterogeneous than previously thought. Compartmentalized infections, exogenous reinfections, and microevolution are manifestations of this clonal complexity. The analysis of the mechanisms causing the microevolution —the genetic variability of M. tuberculosis at short time scales— of a parental strain into clonal variants with a patient is a relevant issue that has not been yet completely addressed. To our knowledge, a whole genome sequence microevolution analysis in a single patient with inadequate adherence to treatment has not been previously reported. Case presentation In this work, we applied whole genome sequencing analysis for a more in-depth analysis of the microevolution of a parental Mycobacterium tuberculosis strain into clonal variants within a patient with poor treatment compliance in Argentina. We analyzed the whole-genome sequence of 8 consecutive Mycobacterium tuberculosis isolates obtained from a patient within 57-months of intermittent therapy. Nineteen mutations (9 short-term, 10 fixed variants) emerged, most of them associated with drug resistance. The first isolate was already resistant to isoniazid, rifampicin, and streptomycin, thereafter the strain developed resistance to fluoroquinolones and pyrazinamide. Surprisingly, isolates remained susceptible to the pro-drug ethionamide after acquiring a frameshift mutation in ethA, a gene required for its activation. We also found a novel variant, (T-54G), in the 5′ untranslated region of whiB7 (T-54G), a region allegedly related to kanamycin resistance. Notably, discrepancies between canonical and phage-based susceptibility testing to kanamycin were previously found for the isolate harboring this mutation. In our patient, microevolution was mainly driven by drug selective pressure. Rare short-term mutations fixed together with resistance-conferring mutations during therapy. Conclusions This report highlights the relevance of whole-genome sequencing analysis in the clinic for characterization of pre-XDR and MDR resistance profile, particularly in patients with incomplete and/or intermittent treatment.


Sign in / Sign up

Export Citation Format

Share Document