scholarly journals The Two-Component System 09 of Streptococcus pneumoniae Is Important for Metabolic Fitness and Resistance during Dissemination in the Host

2021 ◽  
Vol 9 (7) ◽  
pp. 1365
Author(s):  
Stephanie Hirschmann ◽  
Alejandro Gómez-Mejia ◽  
Thomas P. Kohler ◽  
Franziska Voß ◽  
Manfred Rohde ◽  
...  

The two-component regulatory system 09 of Streptococcus pneumoniae has been shown to modulate resistance against oxidative stress as well as capsule expression. These data and the implication of TCS09 in cell wall integrity have been shown for serotype 2 strain D39. Other data have suggested strain-specific regulatory effects of TCS09. Contradictory data are known on the impact of TCS09 on virulence, but all have been explored using only the rr09-mutant. In this study, we have therefore deleted one or both components of the TCS09 (SP_0661 and SP_0662) in serotype 4 S. pneumoniae TIGR4. In vitro growth assays in chemically defined medium (CDM) using sucrose or lactose as a carbon source indicated a delayed growth of nonencapsulated tcs09-mutants, while encapsulated wild-type TIGR4 and tcs09-mutants have reduced growth in CDM with glucose. Using a set of antigen-specific antibodies, immunoblot analysis showed that only the pilus 1 backbone protein RrgB is significantly reduced in TIGR4ΔcpsΔhk09. Electron microscopy, adherence and phagocytosis assays showed no impact of TCS09 on the TIGR4 cell morphology and interaction with host cells. In contrast, in vivo infections and in particular competitive co-infection experiments demonstrated that TCS09 enhances robustness during dissemination in the host by maintaining bacterial fitness.

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1414
Author(s):  
Josep M. Cambra ◽  
Emilio A. Martinez ◽  
Heriberto Rodriguez-Martinez ◽  
Maria A. Gil ◽  
Cristina Cuello

The development of chemically defined media is a growing trend in in vitro embryo production (IVP). Recently, traditional undefined culture medium with bovine serum albumin (BSA) has been successfully replaced by a chemically defined medium using substances with embryotrophic properties such as platelet factor 4 (PF4). Although the use of this medium sustains IVP, the impact of defined media on the embryonic transcriptome has not been fully elucidated. This study analyzed the transcriptome of porcine IVP blastocysts, cultured in defined (PF4 group) and undefined media (BSA group) by microarrays. In vivo-derived blastocysts (IVV group) were used as a standard of maximum embryo quality. The results showed no differentially expressed genes (DEG) between the PF4 and BSA groups. However, a total of 2780 and 2577 DEGs were detected when comparing the PF4 or the BSA group with the IVV group, respectively. Most of these genes were common in both in vitro groups (2132) and present in some enriched pathways, such as cell cycle, lysosome and/or metabolic pathways. These results show that IVP conditions strongly affect embryo transcriptome and that the defined culture medium with PF4 is a guaranteed replacement for traditional culture with BSA.


mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Rong Gao ◽  
Ann M. Stock

ABSTRACT Cells rely on accurate control of signaling systems to adapt to environmental perturbations. System deactivation upon stimulus removal is as important as activation of signaling pathways. The two-component system (TCS) is one of the major bacterial signaling schemes. In many TCSs, phosphatase activity of the histidine kinase (HK) is believed to play an essential role in shutting off the pathway and resetting the system to the prestimulus state. Two basic challenges are to understand the dynamic behavior of system deactivation and to quantitatively evaluate the role of phosphatase activity under natural cellular conditions. Here we report a kinetic analysis of the response to shutting off the archetype Escherichia coli PhoR-PhoB TCS pathway using both transcription reporter assays and in vivo phosphorylation analyses. Upon removal of the stimulus, the pathway is shut off by rapid dephosphorylation of the PhoB response regulator (RR) while PhoB-regulated gene products gradually reset to prestimulus levels through growth dilution. We developed an approach combining experimentation and modeling to assess in vivo kinetic parameters of the phosphatase activity with kinetic data from multiple phosphatase-diminished mutants. This enabled an estimation of the PhoR phosphatase activity in vivo , which is much stronger than the phosphatase activity of PhoR cytoplasmic domains analyzed in vitro . We quantitatively modeled how strong the phosphatase activity needs to be to suppress nonspecific phosphorylation in TCSs and discovered that strong phosphatase activity of PhoR is required for cross-phosphorylation suppression. IMPORTANCE Activation of TCSs has been extensively studied; however, the kinetics of shutting off TCS pathways is not well characterized. We present comprehensive analyses of the shutoff response for the PhoR-PhoB system that reveal the impact of phosphatase activity on shutoff kinetics. This allows development of a quantitative framework not only to characterize the phosphatase activity in the natural cellular environment but also to understand the requirement for specific strengths of phosphatase activity to suppress nonspecific phosphorylation. Our model suggests that the ratio of the phosphatase rate to the nonspecific phosphorylation rate correlates with TCS expression levels and the ratio of the RR to HK, which may contribute to the great diversity of enzyme levels and activities observed in different TCSs.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Fahmina Akhter ◽  
Edroyal Womack ◽  
Jorge E. Vidal ◽  
Yoann Le Breton ◽  
Kevin S. McIver ◽  
...  

Abstract Streptococcus pneumoniae (Spn) must acquire iron from the host to establish infection. We examined the impact of hemoglobin, the largest iron reservoir in the body, on pneumococcal physiology. Supplementation with hemoglobin allowed Spn to resume growth in an iron-deplete medium. Pneumococcal growth with hemoglobin was unusually robust, exhibiting a prolonged logarithmic growth, higher biomass, and extended viability in both iron-deplete and standard medium. We observed the hemoglobin-dependent response in multiple serotypes, but not with other host proteins, free iron, or heme. Remarkably, hemoglobin induced a sizable transcriptome remodeling, effecting virulence and metabolism in particular genes facilitating host glycoconjugates use. Accordingly, Spn was more adapted to grow on the human α − 1 acid glycoprotein as a sugar source with hemoglobin. A mutant in the hemoglobin/heme-binding protein Spbhp-37 was impaired for growth on heme and hemoglobin iron. The mutant exhibited reduced growth and iron content when grown in THYB and hemoglobin. In summary, the data show that hemoglobin is highly beneficial for Spn cultivation in vitro and suggest that hemoglobin might drive the pathogen adaptation in vivo. The hemoglobin receptor, Spbhp-37, plays a role in mediating the positive influence of hemoglobin. These novel findings provide intriguing insights into pneumococcal interactions with its obligate human host.


mBio ◽  
2013 ◽  
Vol 4 (5) ◽  
Author(s):  
Krystle Blanchette-Cain ◽  
Cecilia A. Hinojosa ◽  
Ramya Akula Suresh Babu ◽  
Anel Lizcano ◽  
Norberto Gonzalez-Juarbe ◽  
...  

ABSTRACT Biofilms are thought to play an important role during colonization of the nasopharynx by Streptococcus pneumoniae, yet how they form in vivo and the determinants responsible remain unknown. Using scanning electron microscopy, we show that biofilm aggregates of increasing complexity form on murine nasal septa following intranasal inoculation. These biofilms were highly distinct from in vitro biofilms, as they were discontiguous and appeared to incorporate nonbacterial components such as intact host cells. Biofilms initially formed on the surface of ciliated epithelial cells and, as cells were sloughed off, were found on the basement membrane. The size and number of biofilm aggregates within nasal lavage fluid were digitally quantitated and revealed strain-specific capabilities that loosely correlated with the ability to form robust in vitro biofilms. We tested the ability of isogenic mutants deficient in CbpA, pneumolysin, hydrogen peroxide, LytA, LuxS, CiaR/H, and PsrP to form biofilms within the nasopharynx. This analysis revealed that CiaR/H was absolutely required for colonization, that PsrP and SpxB strongly impacted aggregate formation, and that other determinants affected aggregate morphology in a modest fashion. We determined that mice colonized with ΔpsrP mutants had greater levels of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), IL-1β, and KC in nasal lavage fluid than did mice colonized with wild-type controls. This phenotype correlated with a diminished capacity of biofilm pneumococci to invade host cells in vitro despite enhanced attachment. Our results show that biofilms form during colonization and suggest that they may contribute to persistence through a hyperadhesive, noninvasive state that elicits a dampened cytokine response. IMPORTANCE This work demonstrates the first temporal characterization of Streptococcus pneumoniae biofilm formation in vivo. Our results show that the morphology of biofilms formed by both invasive and noninvasive clinical isolates in vivo is distinct from that of formed biofilms in vitro, yet propensity to form biofilms in vivo loosely correlates with the degree of in vitro biofilm formation on a microtiter plate. We show that host components, including intact host cells, influence the formation of in vivo structures. We also found that efficient biofilm formation in vivo requires multiple bacterial determinants. While some factors are essential for in vivo biofilm formation (CiaRH, PsrP, and SpxB), other factors are less critical (CbpA, LytA, LuxS, and pneumolysin). In comparison to their planktonic counterparts, biofilm pneumococci are hyperadhesive but less invasive and elicit a weaker proinflammatory cytokine response. These findings give insight into the requirements for and potential role of biofilms during prolonged asymptomatic colonization.


2022 ◽  
Vol 12 ◽  
Author(s):  
Kadi J. Horn ◽  
Alexander C. Jaberi Vivar ◽  
Vera Arenas ◽  
Sameer Andani ◽  
Edward N. Janoff ◽  
...  

The stability and composition of the airway microbiome is an important determinant of respiratory health. Some airway bacteria are considered to be beneficial due to their potential to impede the acquisition and persistence of opportunistic bacterial pathogens such as Streptococcus pneumoniae. Among such organisms, the presence of Corynebacterium species correlates with reduced S. pneumoniae in both adults and children, in whom Corynebacterium abundance is predictive of S. pneumoniae infection risk. Previously, Corynebacterium accolens was shown to express a lipase which cleaves host lipids, resulting in the production of fatty acids that inhibit growth of S. pneumoniae in vitro. However, it was unclear whether this mechanism contributes to Corynebacterium-S. pneumoniae interactions in vivo. To address this question, we developed a mouse model for Corynebacterium colonization in which colonization with either C. accolens or another species, Corynebacterium amycolatum, significantly reduced S. pneumoniae acquisition in the upper airway and infection in the lung. Moreover, the lungs of co-infected mice had reduced pro-inflammatory cytokines and inflammatory myeloid cells, indicating resolution of infection-associated inflammation. The inhibitory effect of C. accolens on S. pneumoniae in vivo was mediated by lipase-dependent and independent effects, indicating that both this and other bacterial factors contribute to Corynebacterium-mediated protection in the airway. We also identified a previously uncharacterized bacterial lipase in C. amycolatum that is required for inhibition of S. pneumoniae growth in vitro. Together, these findings demonstrate the protective potential of airway Corynebacterium species and establish a new model for investigating the impact of commensal microbiota, such as Corynebacterium, on maintaining respiratory health.


2018 ◽  
Vol 314 (3) ◽  
pp. L372-L387 ◽  
Author(s):  
Soo Jung Cho ◽  
Kristen Rooney ◽  
Augustine M. K. Choi ◽  
Heather W. Stout-Delgado

Pneumococcal infections are the eigth leading cause of death in the United States, and it is estimated that older patients (≥65 yr of age) account for the most serious cases. The goal of our current study is to understand the impact of biological aging on innate immune responses to Streptococcus pneumoniae, a causative agent of bacterial pneumonia. With the use of in vitro and in vivo aged murine models, our findings demonstrate that age-enhanced unfolded protein responses (UPRs) contribute to diminished inflammasome assembly and activation during S. pneumoniae infection. Pretreatment of aged mice with endoplasmic reticulum chaperone and the stress-reducing agent tauroursodeoxycholic acid (TUDCA) decreased mortality in aged hosts that was associated with increased NLRP3 inflammasome activation, improved pathogen clearance, and decreased pneumonitis during infection. Taken together, our data provide new evidence as to why older persons are more susceptible to S. pneumoniae and provide a possible therapeutic target to decrease morbidity and mortality in this population.


2014 ◽  
Vol 82 (8) ◽  
pp. 3164-3176 ◽  
Author(s):  
Cecilia Casaravilla ◽  
Álvaro Pittini ◽  
Dominik Rückerl ◽  
Paula I. Seoane ◽  
Stephen J. Jenkins ◽  
...  

ABSTRACTThe larval stage of the cestode parasiteEchinococcus granulosuscauses hydatid disease in humans and livestock. This infection is characterized by the growth in internal organ parenchymae of fluid-filled structures (hydatids) that elicit surprisingly little inflammation in spite of their massive size and persistence. Hydatids are protected by a millimeter-thick layer of mucin-based extracellular matrix, termed the laminated layer (LL), which is thought to be a major factor determining the host response to the infection. Host cells can interact both with the LL surface and with materials that are shed from it to allow parasite growth. In this work, we analyzed the response of dendritic cells (DCs) to microscopic pieces of the native mucin-based gel of the LL (pLL).In vitro, this material induced an unusual activation state characterized by upregulation of CD86 without concomitant upregulation of CD40 or secretion of cytokines (interleukin 12 [IL-12], IL-10, tumor necrosis factor alpha [TNF-α], and IL-6). When added to Toll-like receptor (TLR) agonists, pLL-potentiated CD86 upregulation and IL-10 secretion while inhibiting CD40 upregulation and IL-12 secretion.In vivo, pLL also caused upregulation of CD86 and inhibited CD40 upregulation in DCs. Contrary to expectations, oxidation of the mucin glycans in pLL with periodate did not abrogate the effects on cells. Reduction of disulfide bonds, which are known to be important for LL structure, strongly diminished the impact of pLL on DCs without altering the particulate nature of the material. In summary, DCs respond to the LL mucin meshwork with a “semimature” activation phenotype, bothin vitroandin vivo.


2009 ◽  
Vol 192 (3) ◽  
pp. 746-754 ◽  
Author(s):  
Martijn Bekker ◽  
Svetlana Alexeeva ◽  
Wouter Laan ◽  
Gary Sawers ◽  
Joost Teixeira de Mattos ◽  
...  

ABSTRACT ArcBA is a two-component regulatory system of Escherichia coli involved in sensing oxygen availability and the concomitant transcriptional regulation of oxidative and fermentative catabolism. Based on in vitro data, it has been postulated that the redox state of the ubiquinone pool is the determinant for ArcB kinase activity. Here we report on the in vivo regulation of ArcB activation, as determined using a lacZ reporter specifically responsive to phosphorylated ArcA. Our results indicate that upon deletion of a ubiquinone biosynthetic enzyme, regulation of ArcB in the anaerobic-aerobic transition is not affected. In contrast, interference with menaquinone biosynthesis leads to inactivation of ArcB during anaerobic growth; this phenotype is fully rescued by addition of a menaquinone precursor. This clearly demonstrates that the menaquinones play a major role in ArcB activation. ArcB shows a complex pattern of regulation when E. coli is titrated through the entire aerobiosis range; ArcB is activated under anaerobic and subaerobic conditions and is much less active under fully aerobic and microaerobic conditions. Furthermore, there is no correlation between ArcB activation and the redox state of the ubiquinone pool, but there is a restricted correlation between the total cellular ubiquinone content and ArcB activity due to the considerable increase in the size of the ubiquinone pool with increasing degrees of aerobiosis. These results lead to the working hypothesis that the in vivo activity of ArcB in E. coli is modulated by the redox state of the menaquinone pool and that the ubiquinone/ubiquinol ratio in vivo surely is not the only determinant of ArcB activity.


2008 ◽  
Vol 76 (7) ◽  
pp. 3187-3196 ◽  
Author(s):  
Jason W. Rosch ◽  
Beth Mann ◽  
Justin Thornton ◽  
Jack Sublett ◽  
Elaine Tuomanen

ABSTRACT The rlrA pilus locus of Streptococcus pneumoniae is an example of a pathogenicity island acquired through genetic recombination. Many acquired genetic elements commandeer preexisting networks of the new organism for transcriptional regulation. We hypothesized that the rlrA locus has integrated into transcriptional regulatory networks controlling expression of virulence factors important in adhesion and invasion. To test this hypothesis, we determined the impact on pilus expression of known regulators controlling adherence, including the two-component systems CbpR/S and HK/RR03 and the transcriptional regulators of divalent cation transporters MerR and PsaR in vitro and in vivo. It was determined that the pilus locus is down-regulated by preexisting networks designed for adhesion and cation transport/response and that its regulation occurs through RlrA. The pilus locus was found to participate in invasion specifically restricted to lung epithelial cells in vitro. While expression of pili had only a small effect on virulence with an intranasal infection model, pili were critically important with an intratracheal infection model. Thus, expression of pili appears to have become integrated into the regulatory circuits for lung-specific invasion by pneumococci.


2000 ◽  
Vol 68 (4) ◽  
pp. 1919-1927 ◽  
Author(s):  
Elizabeth Pradel ◽  
Nicole Guiso ◽  
Franco D. Menozzi ◽  
Camille Locht

ABSTRACT In gram-negative bacteria, high-affinity iron uptake requires the TonB/ExbB/ExbD envelope complex to release iron chelates from their specific outer membrane receptors into the periplasm. Based on sequence similarities, the Bordetella pertussis tonB exbB exbD locus was identified on a cloned DNA fragment. The tight organization of the three genes suggests that they are cotranscribed. A putative Fur-binding sequence located upstream from tonB was detected in a Fur titration assay, indicating that the tonB exbB exbD operon may be Fur-repressed in high-iron growth conditions. Putative structural genes of the β-subunit of the histone-like protein HU and of a new two-component regulatory system were identified upstream from tonB and downstream from exbD, respectively. A B. pertussis ΔtonB exbB::Kmr mutant was constructed by allelic exchange and characterized. The mutant was impaired for growth in low-iron medium in vitro and could not use ferrichrome, desferal, or hemin as iron sources. Levels of production of the major bacterial toxins and adhesins were similar in the TonB+/TonB− pair. The ΔtonB exbBmutant was still responsive to chemical modulators of virulence; thus, the BvgA/BvgS two-component system is not TonB dependent. Nevertheless, in vivo in the mouse respiratory infection model, the colonization ability of the mutant was reduced compared to the parental strain.


Sign in / Sign up

Export Citation Format

Share Document