scholarly journals The Xanthomonas RaxH-RaxR Two-Component Regulatory System Is Orthologous to the Zinc-Responsive Pseudomonas ColS-ColR System

2021 ◽  
Vol 9 (7) ◽  
pp. 1458
Author(s):  
Valley Stewart ◽  
Pamela C. Ronald

Genome sequence comparisons to infer likely gene functions require accurate ortholog assignments. In Pseudomonas spp., the sensor-regulator ColS-ColR two-component regulatory system responds to zinc and other metals to control certain membrane-related functions, including lipid A remodeling. In Xanthomonas spp., three different two-component regulatory systems, RaxH-RaxR, VgrS-VgrR, and DetS-DetR, have been denoted as ColS-ColR in several different genome annotations and publications. To clarify these assignments, we compared the sensor periplasmic domain sequences and found that those from Pseudomonas ColS and Xanthomonas RaxH share a similar size as well as the location of a Glu-X-X-Glu metal ion-binding motif. Furthermore, we determined that three genes adjacent to raxRH are predicted to encode enzymes that remodel the lipid A component of lipopolysaccharide. The modifications catalyzed by lipid A phosphoethanolamine transferase (EptA) and lipid A 1-phosphatase (LpxE) previously were detected in lipid A from multiple Xanthomonas spp. The third gene encodes a predicted lipid A glycosyl transferase (ArnT). Together, these results indicate that the Xanthomonas RaxH-RaxR system is orthologous to the Pseudomonas ColS-ColR system that regulates lipid A remodeling. To avoid future confusion, we recommend that the terms ColS and ColR no longer be applied to Xanthomonas spp., and that the Vgr, Rax, and Det designations be used instead.

2012 ◽  
Vol 80 (9) ◽  
pp. 3122-3131 ◽  
Author(s):  
Shaan L. Gellatly ◽  
Brittany Needham ◽  
Laurence Madera ◽  
M. Stephen Trent ◽  
Robert E. W. Hancock

ABSTRACTThe adaptation ofPseudomonas aeruginosato its environment, including the host, is tightly controlled by its network of regulatory systems. The two-component regulatory system PhoPQ has been shown to play a role in the virulence and polymyxin resistance ofP. aeruginosaas well as several other Gram-negative species. Dysregulation of this system has been demonstrated in clinical isolates, yet how it affects virulence ofP. aeruginosais unknown. To investigate this, an assay was used whereby bacteria were cocultured with human bronchial epithelial cells. The interaction of wild-type (WT) bacteria that had adhered to epithelial cells led to a large upregulation of the expression of theoprH-phoP-phoQoperon and its target, thearnlipopolysaccharide (LPS) modification operon, in a PhoQ-dependent manner, compared to cells in the supernatant that had failed to adhere. Relative to the wild type, aphoQmutant cocultured on epithelial cells produced less secreted protease and lipase and, like thephoQmutant,piv,lipH, andlasBmutants demonstrated reduced cytotoxicity toward epithelial cells. Mutation inphoQalso resulted in alterations to lipid A and to increased inflammatory LPS. These data indicate that mutation ofphoQresults in a phenotype that is similar to the less virulent but more inflammatory phenotype of clinical strains isolated from chronic-stage cystic fibrosis lung infections.


2013 ◽  
Vol 57 (5) ◽  
pp. 2204-2215 ◽  
Author(s):  
Alina D. Gutu ◽  
Nicole Sgambati ◽  
Pnina Strasbourger ◽  
Mark K. Brannon ◽  
Michael A. Jacobs ◽  
...  

ABSTRACTPseudomonas aeruginosacan develop resistance to polymyxin as a consequence of mutations in the PhoPQ regulatory system, mediated by covalent lipid A modification. Transposon mutagenesis of a polymyxin-resistantphoQmutant defined 41 novel loci required for resistance, including two regulatory systems, ColRS and CprRS. Deletion of thecolRSgenes, individually or in tandem, abrogated the polymyxin resistance of a ΔphoQmutant, as did individual or tandem deletion ofcprRS. Individual deletion ofcolRorcolSin a ΔphoQmutant also suppressed 4-amino-l-arabinose addition to lipid A, consistent with the known role of this modification in polymyxin resistance. Surprisingly, tandem deletion ofcolRSorcprRSin the ΔphoQmutant or individual deletion ofcprRorcprSfailed to suppress 4-amino-l-arabinose addition to lipid A, indicating that this modification alone is not sufficient for PhoPQ-mediated polymyxin resistance inP. aeruginosa. Episomal expression ofcolRSorcprRSin tandem or ofcprRindividually complemented the Pm resistance phenotype in the ΔphoQmutant, while episomal expression ofcolR,colS, orcprSindividually did not. Highly polymyxin-resistantphoQmutants ofP. aeruginosaisolated from polymyxin-treated cystic fibrosis patients harbored mutant alleles ofcolRSandcprS; when expressed in a ΔphoQbackground, these mutant alleles enhanced polymyxin resistance. These results define ColRS and CprRS as two-component systems regulating polymyxin resistance inP. aeruginosa, indicate that addition of 4-amino-l-arabinose to lipid A is not the only PhoPQ-regulated biochemical mechanism required for resistance, and demonstrate thatcolRSandcprSmutations can contribute to high-level clinical resistance.


2005 ◽  
Vol 71 (10) ◽  
pp. 5794-5804 ◽  
Author(s):  
M. Andrea Azcarate-Peril ◽  
Olivia McAuliffe ◽  
Eric Altermann ◽  
Sonja Lick ◽  
W. Michael Russell ◽  
...  

ABSTRACT Two-component regulatory systems are one primary mechanism for environmental sensing and signal transduction. Annotation of the complete genome sequence of the probiotic bacterium Lactobacillus acidophilus NCFM revealed nine two-component regulatory systems. In this study, the histidine protein kinase of a two-component regulatory system (LBA1524HPK-LBA1525RR), similar to the acid-related system lisRK from Listeria monocytogenes (P. D. Cotter et al., J. Bacteriol. 181:6840-6843, 1999), was insertionally inactivated. A whole-genome microarray containing 97.4% of the annotated genes of L. acidophilus was used to compare genome-wide patterns of transcription at various pHs between the control and the histidine protein kinase mutant. The expression pattern of approximately 80 genes was affected by the LBA1524HPK mutation. Putative LBA1525RR target loci included two oligopeptide-transport systems present in the L. acidophilus genome, other components of the proteolytic system, and a LuxS homolog, suspected of participating in synthesis of the AI-2 signaling compound. The mutant exhibited lower tolerance to acid and ethanol in logarithmic-phase cells and poor acidification rates in milk. Supplementation of milk with Casamino Acids essentially restored the acid-producing ability of the mutant, providing additional evidence for a role of this two component system in regulating proteolytic activity in L. acidophilus.


2006 ◽  
Vol 189 (4) ◽  
pp. 1342-1350 ◽  
Author(s):  
Stuart J. McKessar ◽  
Regine Hakenbeck

ABSTRACT The two-component system TCS08 is one of the regulatory systems that is important for virulence of Streptococcus pneumoniae. In order to investigate the TCS08 regulon, we have analyzed transcription profiles of mutants derived from S. pneumoniae R6 by microarray analysis. Since deletion mutants are often without a significant phenotype, we constructed a mutation in the histidine kinase HK08, T133P, in analogy to the phosphatase mutation T230P in the H box of the S. pneumoniae CiaH kinase described recently (D. Zähner, K. Kaminski, M. van der Linden, T. Mascher, M. Merai, and R. Hakenbeck, J. Mol. Microbiol. Biotechnol. 4:211-216, 2002). In addition, a deletion mutation was constructed in rr08, encoding the cognate response regulator. The most heavily suppressed genes in the hk08 mutant were spr0276 to spr0282, encoding a putative cellobiose phosphoenolpyruvate sugar phosphotransferase system (PTS). Whereas the R6 Smr parent strain and the Δrr08 mutant readily grew on cellobiose, the hk08 mutant and selected mutants with deletions in the PTS cluster did not, strongly suggesting that TCS08 is involved in the catabolism of cellobiose. Homologues of the TCS08 system were found in closely related streptococci and other gram-positive cocci. However, the genes spr0276 to spr0282, encoding the putative cellobiose PTS, represent a genomic island in S. pneumoniae and homologues were found in Streptococcus gordonii only, suggesting that this system might contribute to the pathogenicity potential of the pneumococcus.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 635
Author(s):  
Hidetada Hirakawa ◽  
Jun Kurushima ◽  
Yusuke Hashimoto ◽  
Haruyoshi Tomita

Bacteria adapt to changes in their environment using a mechanism known as the two-component regulatory system (TCS) (also called “two-component signal transduction system” or “two-component system”). It comprises a pair of at least two proteins, namely the sensor kinase and the response regulator. The former senses external stimuli while the latter alters the expression profile of bacterial genes for survival and adaptation. Although the first TCS was discovered and characterized in a non-pathogenic laboratory strain of Escherichia coli, it has been recognized that all bacteria, including pathogens, use this mechanism. Some TCSs are essential for cell growth and fitness, while others are associated with the induction of virulence and drug resistance/tolerance. Therefore, the TCS is proposed as a potential target for antimicrobial chemotherapy. This concept is based on the inhibition of bacterial growth with the substances acting like conventional antibiotics in some cases. Alternatively, TCS targeting may reduce the burden of bacterial virulence and drug resistance/tolerance, without causing cell death. Therefore, this approach may aid in the development of antimicrobial therapeutic strategies for refractory infections caused by multi-drug resistant (MDR) pathogens. Herein, we review the progress of TCS inhibitors based on natural and synthetic compounds.


2015 ◽  
Vol 83 (3) ◽  
pp. 1199-1209 ◽  
Author(s):  
Kivanc Bilecen ◽  
Jiunn C. N. Fong ◽  
Andrew Cheng ◽  
Christopher J. Jones ◽  
David Zamorano-Sánchez ◽  
...  

Two-component systems play important roles in the physiology of many bacterial pathogens.Vibrio cholerae's CarRS two-component regulatory system negatively regulates expression ofvps(Vibriopolysaccharide) genes and biofilm formation. In this study, we report that CarR confers polymyxin B resistance by positively regulating expression of thealmEFGgenes, whose products are required for glycine and diglycine modification of lipid A. We determined that CarR directly binds to the regulatory region of thealmEFGoperon. Similarly to acarRmutant, strains lackingalmE,almF, andalmGexhibited enhanced polymyxin B sensitivity. We also observed that strains lackingalmEor thealmEFGoperon have enhanced biofilm formation. Our results reveal that CarR regulates biofilm formation and antimicrobial peptide resistance inV. cholerae.


2004 ◽  
Vol 186 (2) ◽  
pp. 575-579 ◽  
Author(s):  
Samuel M. Moskowitz ◽  
Robert K. Ernst ◽  
Samuel I. Miller

ABSTRACT Spontaneous polymyxin-resistant mutants of Pseudomonas aeruginosa were isolated. The mutations responsible for this phenotype were mapped to a two-component signal transduction system similar to PmrAB of Salmonella enterica serovar Typhimurium. Lipid A of these mutants contained aminoarabinose, an inducible modification that is associated with polymyxin resistance. Thus, P. aeruginosa possesses a mechanism that induces resistance to cationic antimicrobial peptides in response to environmental conditions.


2010 ◽  
Vol 08 (04) ◽  
pp. 717-726 ◽  
Author(s):  
ABHILASH MOHAN ◽  
SHARMILA ANISHETTY ◽  
PENNATHUR GAUTAM

Metal-ion binding proteins play a vital role in biological processes. Identifying putative metal-ion binding proteins is through knowledge-based methods. These involve the identification of specific motifs that characterize a specific class of metal-ion binding protein. Metal-ion binding motifs have been identified for the common metal ions. A robust global fingerprint that is useful in identifying a metal-ion binding protein from a non-metal-ion binding protein has not been devised. Such a method will help in identifying novel metal-ion binding proteins and proteins that do not possess a canonical metal-ion binding motif. We have used a set of physico-chemical parameters of metal-ion binding proteins encoded by the genes CzcA, CzcB and CzcD as a training set to supervised classifiers and have been able to identify several other metal ion binding proteins leading us to believe that metal-ion binding proteins have a global fingerprint, which cannot be pinned down to a single feature of the protein sequence.


2007 ◽  
Vol 405 (2) ◽  
pp. 199-221 ◽  
Author(s):  
Jessica L. Gifford ◽  
Michael P. Walsh ◽  
Hans J. Vogel

The ‘EF-hand’ Ca2+-binding motif plays an essential role in eukaryotic cellular signalling, and the proteins containing this motif constitute a large and functionally diverse family. The EF-hand is defined by its helix–loop–helix secondary structure as well as the ligands presented by the loop to bind the Ca2+ ion. The identity of these ligands is semi-conserved in the most common (the ‘canonical’) EF-hand; however, several non-canonical EF-hands exist that bind Ca2+ by a different co-ordination mechanism. EF-hands tend to occur in pairs, which form a discrete domain so that most family members have two, four or six EF-hands. This pairing also enables communication, and many EF-hands display positive co-operativity, thereby minimizing the Ca2+ signal required to reach protein saturation. The conformational effects of Ca2+ binding are varied, function-dependent and, in some cases, minimal, but can lead to the creation of a protein target interaction site or structure formation from a molten-globule apo state. EF-hand proteins exhibit various sensitivities to Ca2+, reflecting the intrinsic binding ability of the EF-hand as well as the degree of co-operativity in Ca2+ binding to paired EF-hands. Two additional factors can influence the ability of an EF-hand to bind Ca2+: selectivity over Mg2+ (a cation with very similar chemical properties to Ca2+ and with a cytoplasmic concentration several orders of magnitude higher) and interaction with a protein target. A structural approach is used in this review to examine the diversity of family members, and a biophysical perspective provides insight into the ability of the EF-hand motif to bind Ca2+ with a wide range of affinities.


1998 ◽  
Vol 180 (20) ◽  
pp. 5421-5425 ◽  
Author(s):  
Evelyn Zientz ◽  
Johannes Bongaerts ◽  
Gottfried Unden

ABSTRACT In Escherichia coli the genes encoding the anaerobic fumarate respiratory system are transcriptionally regulated by C4-dicarboxylates. The regulation is effected by a two-component regulatory system, DcuSR, consisting of a sensory histidine kinase (DcuS) and a response regulator (DcuR). DcuS and DcuR are encoded by the dcuSR genes (previouslyyjdHG) at 93.7 min on the calculated E. coli map. Inactivation of the dcuR anddcuS genes caused the loss of C4-dicarboxylate-stimulated synthesis of fumarate reductase (frdABCD genes) and of the anaerobic fumarate-succinate antiporter DcuB (dcuB gene). DcuS is predicted to contain a large periplasmic domain as the supposed site for C4-dicarboxylate sensing. Regulation by DcuR and DcuS responded to the presence of the C4-dicarboxylates fumarate, succinate, malate, aspartate, tartrate, and maleate. Since maleate is not taken up by the bacteria under these conditions, the carboxylates presumably act from without. Genes of the aerobic C4-dicarboxylate pathway encoding succinate dehydrogenase (sdhCDAB) and the aerobic succinate carrier (dctA) are only marginally or negatively regulated by the DcuSR system. The CitAB two-component regulatory system, which is highly similar to DcuSR, had no effect on C4-dicarboxylate regulation of any of the genes.


Sign in / Sign up

Export Citation Format

Share Document