scholarly journals The Shiga Toxin Receptor Globotriaosylceramide as Therapeutic Target in Shiga Toxin E. coli Mediated HUS

2021 ◽  
Vol 9 (10) ◽  
pp. 2157
Author(s):  
Wouter J. C. Feitz ◽  
Romy Bouwmeester ◽  
Thea J. A. M. van der Velden ◽  
Susan Goorden ◽  
Christoph Licht ◽  
...  

In 90% of the cases, childhood hemolytic uremic syndrome (HUS) is caused by an infection with the Shiga toxin (Stx) producing E. coli bacteria (STEC-HUS). Stx preferentially binds to its receptor, the glycosphingolipid, globotriaosylceramide (Gb3), present on the surface of human kidney cells and various organs. In this study, the glycosphingolipid pathway in endothelial cells was explored as therapeutic target for STEC-HUS. Primary human glomerular microvascular endothelial cells (HGMVECs) and human blood outgrowth endothelial cells (BOECs) in quiescent and activated state were pre-incubated with Eliglustat (Cerdelga®; glucosylceramide synthase inhibitor) or Agalsidase alpha (Replagal®; human cell derived alpha-galactosidase) in combination with various concentrations of Stx2a. Preincubation of endothelial cells with Agalsidase resulted in an increase of α-galactosidase activity in the cell, but had no effect on the binding of Stx to the cell surface when compared to control cells. However, the incubation of both types of endothelial cells incubated with or without the pro-inflammatory cytokine TNFα in combination with Eliglustat resulted in significant decrease of Stx binding to the cell surface, a decrease in protein synthesis by Stx2a, and diminished cellular Gb3 levels as compared to control cells. In conclusion, inhibition of the synthesis of Gb3 may be a potential future therapeutic target to protect against (further) endothelial damage caused by Stx.

2013 ◽  
Vol 81 (8) ◽  
pp. 2678-2685 ◽  
Author(s):  
Silvia Ehrlenbach ◽  
Alejandra Rosales ◽  
Wilfried Posch ◽  
Doris Wilflingseder ◽  
Martin Hermann ◽  
...  

ABSTRACTInfections with enterohemorrhagicEscherichia coli(EHEC) are a primary cause of hemolytic-uremic syndrome (HUS). Recently, Shiga toxin 2 (Stx2), the major virulence factor of EHEC, was reported to interact with complement, implying that the latter is involved in the pathogenesis of EHEC-induced HUS. The aim of the present study was to investigate the effect of Stx2 on the expression of membrane-bound complement regulators CD46, CD55, and CD59 on proximal tubular epithelial (HK-2) and glomerular endothelial (GEnC) cells derived from human kidney cells that are involved in HUS. Incubation with Stx2 did not influence the amount of CD46 or CD55 on the surface of HK-2 and GEnC cells, as determined by fluorescence-activated cell sorter analysis. In contrast, CD59 was significantly reduced by half on GEnC cells, but the reduction on HK-2 cells was less pronounced. With increasing amounts of Stx2, reduction of CD59 also reached significance in HK-2 cells. Enzyme-linked immunosorbent assay analyses showed that CD59 was not present in the supernatant of Stx2-treated cells, implying that CD59 reduction was not caused by cleavage from the cell surface. In fact, reverse transcription-quantitative PCR analyses showed downregulation of CD59 mRNA as the likely reason for CD59 cell surface reduction. In addition, a significant increase in terminal complement complex deposition on HK-2 cells was observed after treatment with Stx2, as a possible consequence of CD59 downregulation. In summary, Stx2 downregulates CD59 mRNA and protein levels on tubular epithelial and glomerular endothelial cells, and this downregulation likely contributes to complement activation and kidney destruction in EHEC-associated HUS.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3931-3931
Author(s):  
Fang Liu ◽  
Jing Huang ◽  
J. Evan Sadler

Abstract Shiga toxins (Stx) consist of 5 B (binding) subunits that interact with cell surface globotriaosylceramide (Gb3), and a single A subunit that is retrotranslocated into the cytoplasm where it enzymatically inactivates ribosomal RNA. E. coli O157:H7 can express several variants of Shiga toxin (Stx) that cause hemolytic uremic syndrome (HUS) by damaging renal microvascular endothelium. The Stx A subunit is required for cytopathic effects on endothelium. In addition, Stx causes fatal thrombotic microangiopathy in ADAMTS13-deficient mice, but not in wild-type mice, and this effect requires the presence of von Willebrand factor (VWF). When added to cultured human endothelial cells under conditions of laminar flow, Stx rapidly induces the acute secretion of long strings of VWF that attach to the cell surface and bind platelets with high affinity, which suggests that VWF-induced platelet aggregation might contribute to the pathogenesis of HUS. Whether VWF secretion depends on ribotoxic stress is unknown, and the mechanism of Stx-induced VWF secretion has not been characterized. To address these questions, we investigated VWF secretion by human umbilical vein endothelial cells (HUVECs) treated with Stx1 holotoxin (AB5) or binding subunits (B5). Recombinant Stx1 B5 was expressed in E. coli and purified to homogeneity. The pentameric composition and purity of B5 preparations were demonstrated by gel filtration chromatography and Western blotting. Endotoxin was removed from Stx AB5 and B5 preparations by affinity chromatography. HUVECs were perfused in a parallel plate flow chamber with fluorescently labeled anti-VWF and Stx preparations, and secreted VWF strings were visualized in real time by immunofluorescence microscopy. Unexpectedly, we found that Stx1 B5 and Stx1 AB5 were equally potent in stimulating the secretion of VWF strings. String formation was maximal after 5 min and was blocked by soluble analogs of Gb3 or anti-Stx1 B subunit antibodies. Pretreatment of HUVECs with a chelator of intracellular Ca2+ (0.1 mM BAPTA-AM, 30 min), a phospholipase C (PLC) inhibitor (5 μM U73122, 15 min), or a protein kinase C inhibitor (50 nM staurosporine, 30 min) decreased the secretion of VWF strings by 95%, 82%, or 90%, respectively. Treatment with a protein kinase A inhibitor (5 μM H89, 30 min) did not affect VWF string formation. To more directly assess Stx1-induced PLC activation, HUVECs were transfected with a plasmid expressing a PLC-delta PH domain-GFP construct, which binds membrane-associated phosphatidylinositol 4,5-bisphosphate (PIP2). When HUVECs were observed by confocal microscopy, both Stx1 AB5 and Stx1 B5 caused a rapid (<60 s) redistribution of fluorescent signal from plasma membrane to cytosol, indicating the acute activation of PLC and hydrolysis of PIP2. In addition, Stx1 AB5 or B5 induced a transient rise in intracellular Ca2+ level that peaked by 30 sec and declined to baseline over 5 min. Stx1-induced Ca2+ transients were comparable to those induced by 0.1 mM histamine or 1 U/ml thrombin. Stx-induced Ca2+ responses were inhibited by BAPTA-AM or U73122, but not by staurosporine or H89. Treatment with Stx1 AB5 or B5 had no effect on intracellular levels of cAMP. These results indicate that Stx1 B subunits stimulate VWF secretion through a previously unsuspected signaling pathway that involves binding to cell surface Gb3, PIP2 hydrolysis by PLC, increased intracellular Ca2+, and activation of PKC. Therefore, Stx1 secreted by enterohemorrhagic E. coli may contribute to the pathogenesis of HUS through at least two mechanisms that affect microvascular endothelium: cell death caused by A subunit-induced ribotoxic stress, and VWF secretion caused by an independent B subunit-induced cell signaling pathway.


1979 ◽  
Author(s):  
S. Korach ◽  
D. Ngo

Adult pig aortas, sectioned longitudinally, were incubated in 0.1% collagenase-PBS (15 mn, 37°C). Gentle scraping of the lumenal surface resulted in high yields (3-4 x 106 cell/aorta) of viable endothelial cells, essentially devoid of other cell types by morphological and immunochemical (F VIII-antigen) criteria. Confluent monolayers were incubated for various times (5 mn to 1 wk) with decomplemented rabbit antisera raised against pig endothelial cells. Changes in cell morphology appeared to depend on antibody concentration rather than on duration of contact with antiserum. High concentrations of antiserum (5 to 20%) led to cytoplasmic shredding, bulging of cells and extensive vacuolization, whereas at lower concentrations, cells appeared almost normal. Transmission EM studies by the indirect immunoperoxydase method showed antibodies reacting with unfixed cells to be distributed all over the upper cell surface, in the outer parts of intercellular junctions, and within numerous pinocytotic vesicles. Much weaker reactions could also be seen at the lower cell surface. When viewed under the Scanning EM, antiserum-treated endothelial cells also disclosed antibody concentration-dependent bulging and release of cells from their substrate. In vitro studies of gradual modifications of vascular endothelial cells acted upon by antibodies should provide a better understanding of the structural and biochemical processes underlying endothelial damage and detachment.


Author(s):  
Julie A. Peterson ◽  
Susan A. Maroney ◽  
Nicholas D. Martinez ◽  
Alan E. Mast

Objective: Human endothelial cells produce 2 alternatively spliced TFPI (tissue factor pathway inhibitor) isoforms that maintain anticoagulant properties of the vasculature. TFPIβ is glycosylphosphatidylinositol anchored on the cell surface. TFPIα has a basic C terminus sharing homology with VEGF (vascular endothelial growth factor) and is a heparin-releasable protein, suggesting it binds glycosaminoglycans on the endothelium surface. However, this is unclear because TFPIα is not on the surface of cultured endothelial cells. This study identifies the source of heparin-releasable TFPIα. Approach and Results: ELISA assays localized heparin-releasable TFPIα to the extracellular matrix (ECM) of Ea.hy926 cells and human umbilical vein endothelial cells. Immunofluorescence microscopy for TFPIα showed punctate intracytoplasmic staining and ECM staining beneath individual cells. Flow cytometry identified TFPIβ but not TFPIα on the cell surface. TFPIα localization to ECM was confirmed with ELISA and immunohistochemistry studies of umbilical cord veins. The TFPIα C terminus interacted with Ea.hy926 ECM glycosaminoglycans, and a homologous VEGF peptide competed for this binding, suggesting these interactions modulate VEGF responses. Immobilized TFPIα C-terminal peptide bound to several ECM proteoglycans in Ea.hy926 conditioned media. Immunofluorescence studies of human kidney colocalized TFPIα with 4 of these proteoglycans surrounding the microvasculature: glypican-1, syndecan-4, thrombospondin, and laminin-5. The absence of TFPIα on the surface of endothelial cells and its co-localization with specific ECM proteins suggests TFPIα binds to unique proteoglycan structures. Conclusions: ECM contained the primary vascular pool of heparin-releasable TFPIα. By localizing to ECM, TFPIα is positioned to inhibit the procoagulant activity of tissue factor surrounding the vasculature.


Toxins ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 483
Author(s):  
Wouter J. C. Feitz ◽  
Nicole C. A. J. van de Kar ◽  
Ian Cheong ◽  
Thea J. A. M. van der Velden ◽  
Carolina G. Ortiz-Sandoval ◽  
...  

Hemolytic uremic syndrome (HUS) is a rare disease primarily characterized by hemolytic anemia, thrombocytopenia, and acute renal failure. Endothelial damage is the hallmark of the pathogenesis of HUS with an infection with the Shiga toxin (Stx) producing Escherichia coli (STEC-HUS) as the main underlying cause in childhood. In this study, blood outgrowth endothelial cells (BOECs) were isolated from healthy donors serving as controls and patients recovered from STEC-HUS. We hypothesized that Stx is more cytotoxic for STEC-HUS BOECs compared to healthy donor control BOECs explained via a higher amount of Stx bound to the cell surface. Binding of Shiga toxin-2a (Stx2a) was investigated and the effect on cytotoxicity, protein synthesis, wound healing, and cell proliferation was studied in static conditions. Results show that BOECs are highly susceptible for Stx2a. Stx2a is able to bind to the cell surface of BOECs with cytotoxicity in a dose-dependent manner as a result. Pre-treatment with tumor necrosis factor alpha (TNF-α) results in enhanced Stx binding with 20–30% increased lactate dehydrogenase (LDH) release. Endothelial wound healing is delayed in a Stx2a-rich environment; however, this is not caused by an effect on the proliferation rate of BOECs. No significant differences were found between control BOECs and BOECs from recovered STEC-HUS patients in terms of Stx2a binding and inhibition of protein synthesis.


2021 ◽  
Author(s):  
Daiana Martire-Greco ◽  
Alejandro La Greca ◽  
Luis Castillo Montañez ◽  
Celeste Biani ◽  
Antonella Lombardi ◽  
...  

Background: Mesenchymal Stem Cells can be activated and respond to different bacterial toxins. Lipopolysaccharides (LPS) and Shiga Toxin (Stx) are the two main bacterial toxins present in Hemolytic Uremic Syndrome (HUS) that cause endothelial damage. In this work we aimed to study the response of iPSC-MSC to LPS and/or Stx and its effect on the restoration of injured endothelial cells. Methods: iPSC-MSC were used as a source of mesenchymal stem cells (MSC) and Human Microvascular Endothelial Cells-1 (HMEC-1) as a source of endothelial cells. iPSC-MSC were treated or not with LPS and or/Stx. For some experiments, Conditioned Media (CM) were collected from each plate and incubated with an anti-Stx antibody to block the direct effect of Stx, or Polymyxin to block the direct effect of LPS. In CM from both treatments, anti-Stx and Polymyxin were used. Results are expressed as mean ± S.E.M. Significant differences (p<0.05) were identified using one way analysis of variance (ANOVA) and Bonferroni's Multiple comparison test. Results: The results obtained showed that LPS induced a pro-inflammatory profile on iPSC-MSC, but not Stx, even though they expressed Gb3 receptor. Moreover, LPS induced on iPSC-MSC an increment in migration and adhesion to gelatin substrate. Also, the addition of CM of iPSC-MSC treated with LPS+Stx, decreased the capacity of HMEC-1 to close a wound, and did not favor the formation of new tubes. Proteomic analysis of iPSC-MSC treated with LPS and/or Stx revealed specific protein secretion patterns that support many of the functional results described here. Conclusions: In conclusion, these results suggest that iPSC-MSC activated by LPS acquired a pro-inflammatory profile that induces migration and adhesion to extracellular matrix proteins (ECM), but the combination LPS+Stx decreased the repair of endothelial damage. The importance of this work is that it provides knowledge to understand the context in which iPSC-MSC could benefit or not the restoration of tissue injury, taking into account that the inflammatory context in response to a particular bacterial toxin is relevant for iPSC-MSC immunomodulation.


2005 ◽  
Vol 73 (12) ◽  
pp. 8306-8316 ◽  
Author(s):  
Fadila Guessous ◽  
Marek Marcinkiewicz ◽  
Renata Polanowska-Grabowska ◽  
Sudawadee Kongkhum ◽  
Daniel Heatherly ◽  
...  

ABSTRACT Shiga toxins (Stxs) produced by Shigella dysenteriae type 1 and enterohemorrhagic Escherichia coli are the most common cause of hemolytic-uremic syndrome (HUS). It is well established that vascular endothelial cells, mainly those located in the renal microvasculature, are targets for Stxs. The aim of the present research was to evaluate whether E. coli-derived Shiga toxin 2 (Stx2) incubated with human microvascular endothelial cells (HMEC-1) induces release of chemokines and other factors that might stimulate platelet function. HMEC-1 were exposed for 24 h in vitro to Stx2, lipopolysaccharide (LPS), or the Stx2-LPS combination, and chemokine production was assessed by immunoassay. More interleukin-8 was released than stromal cell-derived factor 1α (SDF-1α) or SDF-1β and RANTES. The Stx2-LPS combination potentiated chemokine release, but Stx2 alone caused more release of SDF-1α at 24 h than LPS or Stx2-LPS did. In the presence of low ADP levels, HMEC-1 supernatants activated platelet function assessed by classical aggregometry, single-particle counting, granule secretion, P-selectin exposure, and the formation of platelet-monocyte aggregates. Supernatants from HMEC-1 exposed only to Stx2 exhibited enhanced exposure of platelet P-selectin and platelet-THP-1 cell interactions. Blockade of platelet cyclooxygenase by indomethacin prevented functional activation. The chemokine RANTES enhanced platelet aggregation induced by SDF-1α, macrophage-derived chemokine, or thymus and activation-regulated chemokine in the presence of very low ADP levels. These data support the hypothesis that microvascular endothelial cells exposed to E. coli O157:H7-derived Stx2 and LPS release chemokines and other factors, which when combined with low levels of primary agonists, such as ADP, cause platelet activation and promote the renal thrombosis associated with HUS.


Author(s):  
D. E. Philpott ◽  
A. Takahashi

Two month, eight month and two year old rats were treated with 10 or 20 mg/kg of E. Coli endotoxin I. P. The eight month old rats proved most resistant to the endotoxin. During fixation the aorta, carotid artery, basil arartery of the brain, coronary vessels of the heart, inner surfaces of the heart chambers, heart and skeletal muscle, lung, liver, kidney, spleen, brain, retina, trachae, intestine, salivary gland, adrenal gland and gingiva were treated with ruthenium red or alcian blue to preserve the mucopolysaccharide (MPS) coating. Five, 8 and 24 hrs of endotoxin treatment produced increasingly marked capillary damage, disappearance of the MPS coating, edema, destruction of endothelial cells and damage to the basement membrane in the liver, kidney and lung.


1967 ◽  
Vol 18 (03/04) ◽  
pp. 592-604 ◽  
Author(s):  
H. R Baumgartner ◽  
J. P Tranzer ◽  
A Studer

SummaryElectron microscopic and histologic examination of rabbit ear vein segments 4 and 30 min after slight endothelial damage have yielded the following findings :1. Platelets do not adhere to damaged endothelial cells.2. If the vessel wall is denuded of the whole endothelial cell, platelets adhere to the intimai basement lamina as do endothelial cells.3. The distance between adherent platelets as well as endothelial cells and intimai basement lamina measures 10 to 20 mµ, whereas the distance between aggregated platelets is 30 to 60 mµ.4. 5-hydroxytryptamine (5-HT) is released from platelets during viscous metamorphosis at least in part as 5-HT organelles.It should be noted that the presence of collagen fibers is not necessary for platelet thrombus formation in vivo.


Sign in / Sign up

Export Citation Format

Share Document