scholarly journals Evaluation of Bio-Based Extraction Methods by Spectroscopic Methods

Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 203
Author(s):  
Mathilde Monachon ◽  
Magdalena Albelda-Berenguer ◽  
Tiziana Lombardo ◽  
Emilie Cornet ◽  
Friederike Moll-Dau ◽  
...  

New technologies are in development regarding the preservation of waterlogged archaeological wood items contaminated with Fe/S species. To this purpose, a bio-based treatment to extract these harmful species before further damages occur is presented. Thiobacillus denitrificans and desferoxamine were employed based on their specific properties to solubilize iron sulfides and uptake iron. The biological treatment was compared with oxidizing and complexing agents (sodium persulfate and ethylene diamine tetraacetate) traditionally used in conservation-restoration. Mock-ups of fresh balsa as well as fresh and archeological oak and pinewood were prepared to simulate degraded waterlogged wood by immersion in corrosive Fe/S solutions. The efficiency of both biological and chemical extraction methods was evaluated through ATR-FTIR and Raman spectroscopies and validated by statistical approach. Results showed that treatments did not affect the wood composition, meaning that no wood degradation was induced. However, the chemical method tended to bleach the samples and after treatment, reduced sulfur species were still identified by Raman analyses. Finally, statistical approaches allowed validating ATR-FTIR results.

2021 ◽  
Vol 136 (9) ◽  
Author(s):  
Mathilde Monachon ◽  
Magdalena Albelda-Berenguer ◽  
Tiziana Lombardo ◽  
Emilie Cornet ◽  
Friederike Moll-Dau ◽  
...  

AbstractAn innovative bioextraction method was tested and compared to common chemical extraction for the preservation of waterlogged archeological wood (WAW) artifacts. During burial, WAW artifacts accumulate iron and sulfur species forming iron sulfides. These compounds are harmless in the burial environment, where the oxygen content is low. But upon excavation, the WAW undergoes the oxidation of these compounds, and thus, irreversible physical and chemical damages occur. Fresh and archeological oak and pine samples were selected as representative species of WAW artifacts. Fresh samples were previously artificially contaminated to ascertain the presence of iron and sulfur. Thiobacillus denitrificans and natural iron chelators, called siderophores, were investigated to extract iron and sulfur as a 2-step biological treatment (BT) and compared to sodium persulfate–EDTA as chemical treatment (CT). Consolidation and freeze-drying were performed on the samples after BT and CT as traditional conservation protocols. BT and CT efficiency was evaluated through Raman, inductively coupled plasma–optical emission (ICP-OES), and Fourier transformed infrared (FTIR) spectroscopies. Raman and ICP showed that most of the iron and sulfur was extracted after BT, while some sulfur species remained present on CT samples. None of the extraction methods resulted in a degradation of the wood, as ascertained by FTIR analyses. Yet, all samples presented visual modifications after conservation. Pine samples treated with BT illustrated the oxidation of the species. Present principal component analysis (PCA) and analysis of variance (ANOVA) which were selected as statistical approaches and validated BT as a promising alternative extraction method, with encouraging extraction rates and less alteration of the sample appearance.


1997 ◽  
Vol 36 (6-7) ◽  
pp. 191-200 ◽  
Author(s):  
C. M. Carliell ◽  
A. D. Wheatley

Chemical extraction methods are used to investigate metal and phosphate speciation during anaerobic digestion of phosphorus-rich sludge. Tests were performed using model compounds to evaluate the efficacy of the reagents in the extraction sequences and these results compared with similar work by other researchers. The metal speciation method was found to be suitable for identifying shifts in metal distribution but was unrepresentative of actual metal species. The phosphate speciation method did give adequate separation of the phosphate compounds tested. Full-scale digesters treating chemical and biological phosphate removal (CPR and BPR) sludge were analysed according to the methods developed. Results show that digestion of CPR sludge did not increase the soluble P concentration in the digester and that most of the precipitated phosphorus appeared to be retained in the sludge as inorganic P. The digester treating BPR sludge showed increased soluble and water-extractable P, in comparison to the control digester. Trace metal speciation profiles were found to be affected by addition of CPR sludge.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 236
Author(s):  
Dimitrios Lampakis ◽  
Prodromos Skenderidis ◽  
Stefanos Leontopoulos

The interest in using plant by-product extracts as functional ingredients is continuously rising due to environmental and financial prospects. The development of new technologies has led to the achievement of aqueous extracts with high bioactivity that is preferable due to organic solvents nonuse. Recently, widely applied and emerging technologies, such as Simple Stirring, Pressure-Applied Extraction, Enzymatic Extraction, Ultrasound-Assisted Extraction, Pulsed Electric Fields, High Hydrostatic Pressure, Ohmic Heating, Microwave Assistant Extraction and the use of “green” solvents such as the deep eutectic solvents, have been investigated in order to contribute to the minimization of disadvantages on the extraction of bioactive compounds. This review is focused on bioactive compounds derived from pomegranate (Punica granatum) peels and highlighted the most attractive extraction methods. It is believed that these findings could be a useful tool for the pomegranate juices industry to apply an effective and economically viable extraction process, transforming a by-product to a high added value functional product.


2013 ◽  
Vol 37 (2) ◽  
pp. 450-461 ◽  
Author(s):  
Eduardo Mariano ◽  
Paulo Cesar Ocheuze Trivelin ◽  
José Marcos Leite ◽  
Michele Xavier Vieira Megda ◽  
Rafael Otto ◽  
...  

Considering nitrogen mineralization (N) of soil organic matter is a key aspect for the efficient management of N fertilizers in agricultural systems. Long-term aerobic incubation is the standard technique for calibrating the chemical extraction methods used to estimate the potentially mineralizable N in soil. However, the technique is laborious, expensive and time-consuming. In this context, the aims of this study were to determine the amount of soil mineralizable N in the 0-60 cm layer and to evaluate the use of short-term anaerobic incubation instead of long-term aerobic incubation for the estimation of net N mineralization rates in soils under sugarcane. Five soils from areas without previous N fertilization were used in the layers 0-20, 20-40 and 40-60 cm. Soil samples were aerobically incubated at 35 ºC for 32 weeks or anaerobically incubated (waterlogged) at 40 ºC for seven days to determine the net soil N mineralization. The sand, silt and clay contents were highly correlated with the indexes used for predicting mineralizable N. The 0-40 cm layer was the best sampling depth for the estimation of soil mineralizable N, while in the 40-60 cm layer net N mineralization was low in both incubation procedures. Anaerobic incubation provided reliable estimates of mineralizable N in the soil that correlated well with the indexes obtained using aerobic incubation. The inclusion of the pre-existing NH4+-N content improved the reliability of the estimate of mineralizable N obtained using anaerobic incubation.


Author(s):  
Kiran Meghwal ◽  
Reema Agrawal ◽  
Srishti Kumawat ◽  
Nirmala Kumari Jangid ◽  
Chetna Ameta

Life of living or non-living being depends on water; in short, water is life. But these days, with the growing industrialization, it is spoiling a lot. Wastewater contains contaminants like acids, bases, toxic organic and inorganic dissolved solids, and colors. Out of them, the most undesirable are colors caused mainly by dyes. Color and other compounds present in water are always not desirable for domestic or industrial needs. The wastes of dyes are predominant amongst all the complex industrial wastewater. This water is dark in color and highly toxic, blocking the sunlight and affecting the ecosystem. Among all the dyes, azo dyes contribute to commercial dyes used widely in textile, plastic, leather, and paper industries as additives. The removal and degradation of azo dyes in aquatic environment is important because they are highly toxic to aquatic organisms. For every industry, clean technology has become an important concern. In this chapter, the authors discuss about existing processes as well as promising new technologies for textile wastewater decolorisation.


1964 ◽  
Vol 12 (8) ◽  
pp. 640-645 ◽  
Author(s):  
R. DAOUST

Rat tissue sections were freed from nucleic acids by enzymatic or chemical extraction methods, immersed in solutions of nucleic acids from various sources and stained with toluidine blue. Tissue sections immersed in solutions of DNA showed intense nuclear and cytoplasmic staining; similar results were obtained with tissue sections placed in solutions of RNA. Thus both DNA and RNA can bind to nuclear and cytoplasmic sites in tissue sections freed from nucleic acids. The experiments indicated however that in vitro binding of nucleic acids to tissue sections was not specific to original sites of nucleic acid binding and the reactions showed no particular species or organ specificity.


Sign in / Sign up

Export Citation Format

Share Document