scholarly journals Environmental Evaluation of Gypsum Plasterboard Recycling

Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 101
Author(s):  
Karin Weimann ◽  
Christian Adam ◽  
Matthias Buchert ◽  
Juergen Sutter

Gypsum is widely used in the construction sector, and its worldwide consumption has been increasing for several decades. Depending on the lifetime of the used gypsum products, an increase of gypsum in construction and demolition waste follows. Especially against the background of a circular economy, the recycling of waste gypsum is of growing importance. However, the use of recycled gypsum only makes sense if it is environmentally friendly. Therefore, an evaluation of the environmental impacts of industrial-scale processing for the recycling of post-consumer gypsum waste was conducted. The evaluation was performed with an established life cycle assessment software. Original data provided by the industry and complementary data from a database for life cycle assessments were used for the calculations. Two scenarios for recycled gypsum with different transportation distances were calculated. These results were compared with the results of the environmental evaluation of gypsum derived from coal-fired power plants (FGD gypsum) and natural gypsum. The results showed that the utilization of recycled gypsum can be environmentally advantageous compared to the use of natural gypsum or FGD gypsum, especially in the impact categories of land transformation and resource consumption (abiotic depletion potential). For most environmental impact categories, the specific transportation distances have a strong influence.

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3867
Author(s):  
Cristina Oreto ◽  
Francesca Russo ◽  
Rosa Veropalumbo ◽  
Nunzio Viscione ◽  
Salvatore Antonio Biancardo ◽  
...  

The pursuit of sustainability in the field of road asphalt pavements calls for effective decision-making strategies, referring to both the technical and environmental sustainability of the solutions. This study aims to compare the life cycle impacts of several pavement solution alternatives involving, in the binder and base layers, some eco-designed, hot- and cold-produced asphalt mixtures made up of recycled aggregates in substitution for natural filler and commercial recycled polymer pellets for dry mixture modification. The first step focused on the technical and environmental compatibility assessment of the construction and demolition waste (CDW), jet grouting waste (JGW), fly ash (FA), and reclaimed asphalt pavement (RAP). Then, three non-traditional mixtures were designed for the binder layer and three for the base layer and characterized in terms of the stiffness modulus. Asphalt pavement design allowed for the definition of the functional units of Life Cycle Assessment (LCA), which was applied to all of the pavement configurations under analysis in a “from cradle to grave” approach. The LCA results showed that the best performance was reached for the solutions involving a cold, in-place recycled mixture made up of RAP and JGW in the base layer, which lowered all the impact category indicators by 31% on average compared to those of the traditional pavement solution. Further considerations highlighted that the combination of a cold base layer with a hot asphalt mixture made up of CDW or FA in the binder layer also maximized the service life of the pavement solution, providing the best synergistic effect.


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 709 ◽  
Author(s):  
Lalitsuda Phutthimethakul ◽  
Park Kumpueng ◽  
Nuta Supakata

This research aims to study the utilization of waste from power plants, construction and demolition, and agriculture by varying the ratios of flue-gas desulfurization (FGD) gypsum, construction and demolition waste (CDW), and oil palm trunks (OPT) in concrete production. This research used these as the raw materials for the production of concrete bricks of 15 × 15 × 15 cm. There were 12 ratios of concrete brick, fixing 5.5 wt% of FGD gypsum to replace Portland cement and substituting coarse sand with 0 wt%, 25 wt%, 50 wt%, or 75 wt% of CDW, and gravel with 0 wt%, 0.5 wt%, and 1 wt% of OPT. The initial binder:fine aggregate:coarse aggregate ratio was 1:2:4 and the water to cement ratio was 0.5, curing in water at room temperature for 28 days. Then, all concrete brick specimens were tested for compressive strength and water absorption. From the experiment, it was found that the highest compressive strength of concrete brick specimens was 45.18 MPa, which was produced from 5.5% gypsum without CDW and OPT, while 26.84 MPa was the lowest compressive strength obtained from concrete bricks produced from 5.5% FGD gypsum, 75% CDW, and 1% OPT. In terms of usage, all proportions can be applied in construction and building work because the compressive strength and water absorption were compliant with the Thai Industrial Standard TIS 57-2530 and TIS 60-2516.


2021 ◽  
Vol 13 (15) ◽  
pp. 8427
Author(s):  
Bahareh Nikmehr ◽  
M. Reza Hosseini ◽  
Jun Wang ◽  
Nicholas Chileshe ◽  
Raufdeen Rameezdeen

This article provides a picture of the latest developments in providing BIM-based tools for construction and demolition waste (CDW) management. The coverage and breadth of the literature on offering BIM-based tools and technologies for dealing with CDW throughout the whole life cycle of construction are investigated, and gaps are identified. Findings reveal that, although various BIM-based technologies are closely associated with CDW, much of the existing research on this area has focused on the design and construction phase; indeed, the problem of CDW in post-construction stages has received scant attention. Besides, the now available tools and technologies are lacking in cross-phase insights into project waste aspects and are weak in theoretical rigor. This article contributes to the field by identifying the intellectual deficiencies in offering BIM-based tools and technologies when dealing with CDW. So, too, it points to major priorities for future research on the topic. For practitioners, the study provides a point of reference and raises awareness in the field about the most advanced available BIM-based technologies for dealing with CDW problems.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1226
Author(s):  
Beatriz Fraga-De Cal ◽  
Antonio Garrido-Marijuan ◽  
Olaia Eguiarte ◽  
Beñat Arregi ◽  
Ander Romero-Amorrortu ◽  
...  

Prefabricated solutions incorporating thermal insulation are increasingly adopted as an energy conservation measure for building renovation. The InnoWEE European project developed three technologies from Construction and Demolition Waste (CDW) materials through a manufacturing process that supports the circular economy strategy of the European Union. Two of them consisted of geopolymer panels incorporated into an External Thermal Insulation Composite System (ETICS) and a ventilated façade. This study evaluates their thermal performance by means of monitoring data from three pilot case studies in Greece, Italy, and Romania, and calibrated building simulation models enabling the reliable prediction of energy savings in different climates and use scenarios. Results showed a reduction in energy demand for all demo buildings, with annual energy savings up to 25% after placing the novel insulation solutions. However, savings are highly dependent on weather conditions since the panels affect cooling and heating loads differently. Finally, a parametric assessment is performed to assess the impact of insulation thickness through an energy performance prediction and a cash flow analysis.


Author(s):  
V. Russo ◽  
A. E. Strever ◽  
H. J. Ponstein

Abstract Purpose Following the urgency to curb environmental impacts across all sectors globally, this is the first life cycle assessment of different wine grape farming practices suitable for commercial conventional production in South Africa, aiming at better understanding the potentials to reduce adverse effects on the environment and on human health. Methods An attributional life cycle assessment was conducted on eight different scenarios that reduce the inputs of herbicides and insecticides compared against a business as usual (BAU) scenario. We assess several impact categories based on ReCiPe, namely global warming potential, terrestrial acidification, freshwater eutrophication, terrestrial toxicity, freshwater toxicity, marine toxicity, human carcinogenic toxicity and human non-carcinogenic toxicity, human health and ecosystems. A water footprint assessment based on the AWARE method accounts for potential impacts within the watershed. Results and discussion Results show that in our impact assessment, more sustainable farming practices do not always outperform the BAU scenario, which relies on synthetic fertiliser and agrochemicals. As a main trend, most of the impact categories were dominated by energy requirements of wine grape production in an irrigated vineyard, namely the usage of electricity for irrigation pumps and diesel for agricultural machinery. The most favourable scenario across the impact categories provided a low diesel usage, strongly reduced herbicides and the absence of insecticides as it applied cover crops and an integrated pest management. Pesticides and heavy metals contained in agrochemicals are the main contributors to emissions to soil that affected the toxicity categories and impose a risk on human health, which is particularly relevant for the manual labour-intensive South African wine sector. However, we suggest that impacts of agrochemicals on human health and the environment are undervalued in the assessment. The 70% reduction of toxic agrochemicals such as Glyphosate and Paraquat and the 100% reduction of Chlorpyriphos in vineyards hardly affected the model results for human and ecotoxicity. Our concerns are magnified by the fact that manual labour plays a substantial role in South African vineyards, increasing the exposure of humans to these toxic chemicals at their workplace. Conclusions A more sustainable wine grape production is possible when shifting to integrated grape production practices that reduce the inputs of agrochemicals. Further, improved water and related electricity management through drip irrigation, deficit irrigation and photovoltaic-powered irrigation is recommendable, relieving stress on local water bodies, enhancing drought-preparedness planning and curbing CO2 emissions embodied in products.


2018 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
Nadia Qamar ◽  
Ayesha Alam Khurram

In Pakistan, construction and demolition waste(CDW) is generated in voluminous amount each year. CDW iswidely ill-handled and ultimately fed to landfills causing harm tothe already alarming environmental conditions. In order tosearch for the solution of this drastic matter, a study was done,which is explained in this paper. This paper presents the studydone at a demolition site near Karachi, in Sindh while thedemolition works were being carried out. At the site there wereold barracks which were being demolished. Before the demolitionworks were commenced, the site was surveyed and structuralcomponents of the barracks were counted and their dimensionswere measured. When the demolition was over, the demolishedwaste was calculated which comprised of concrete and masonryrubble, steel round bars, steel doors, steel windows, steel ceiling,steel girders, steel main gate, and plastic water tank. This studyinterpreted that construction and demolition (C&D) works wereprogressing considering the works’ deadline and the clients’requirements but the ecosystem’s ecology and the environmentalhealth were not taken into account. Recommendations are madeto handle CDW properly throughout its lifecycle. Theserecommendations aim to provide technological and logicalsolutions to grip CDW. The recommendations include wastereduction and reusing waste, life cycle assessment and costing,environmental and economic impact, material flow analysis, andadvanced computerized-tools.


2021 ◽  
Vol 13 (17) ◽  
pp. 9625
Author(s):  
Ambroise Lachat ◽  
Konstantinos Mantalovas ◽  
Tiffany Desbois ◽  
Oumaya Yazoghli-Marzouk ◽  
Anne-Sophie Colas ◽  
...  

The demolition of buildings, apart from being energy intensive and disruptive, inevitably produces construction and demolition waste (C&Dw). Unfortunately, even today, the majority of this waste ends up underexploited and not considered as valuable resources to be re-circulated into a closed/open loop process under the umbrella of circular economy (CE). Considering the amount of virgin aggregates needed in civil engineering applications, C&Dw can act as sustainable catalyst towards the preservation of natural resources and the shift towards a CE. This study completes current research by presenting a life cycle inventory compilation and life cycle assessment case study of two buildings in France. The quantification of the end-of-life environmental impacts of the two buildings and subsequently the environmental impacts of recycled aggregates production from C&Dw was realized using the framework of life cycle assessment (LCA). The results indicate that the transport of waste, its treatment, and especially asbestos’ treatment are the most impactful phases. For example, in the case study of the first building, transport and treatment of waste reached 35% of the total impact for global warming. Careful, proactive, and strategic treatment, geolocation, and transport planning is recommended for the involved stakeholders and decision makers in order to ensure minimal sustainability implications during the implementation of CE approaches for C&Dw.


Sign in / Sign up

Export Citation Format

Share Document