scholarly journals Interaction Mechanism between Molybdenite and Kaolinite in Gypsum Solution Using Kerosene as the Flotation Collector

Minerals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 304 ◽  
Author(s):  
Liqing Sun ◽  
Yijun Cao ◽  
Yinfei Liao ◽  
Zilong Ma

This paper aims to understand the fundamental interaction mechanism between molybdenite and kaolinite in gypsum solution using kerosene as collector. Micro-flotation tests were conducted to study the effect of gypsum solution on the flotation performance of mixed −74 μm molybdenite and −10 μm kaolinite mineral. The results showed that the recovery of molybdenite decreased from 86% to 74% while the gypsum solution concentration increased from 0 to 800 mg/L, indicating the detrimental effect of kaolinite on molybdenite flotation could be enhanced by gypsum solution. This is mainly caused by the slime coating of kaolinite on molybdenite through dissolved calcium ion of gypsum solution. In order to confirm the slime coating phenomenon, zeta potential distribution, scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements were used to investigate interaction characteristics and mechanisms. The zeta potential distribution results revealed that mixed samples had the value between signal molybdenite and kaolinite samples in gypsum solution, which proved the coating phenomenon of kaolinite on molybdenite. Moreover, the coating phenomenon was becoming more and more obvious with the gypsum solution concentration. The coating phenomenon of kaolinite on molybdenite surface was also directly observed from SEM results. The AFM results provided further evidence for the possibility of slime coating, as the adhesion force increased with the gypsum solution concentration, which means the aggregates of molybdenite and kaolinite were becoming more stable.

Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 77 ◽  
Author(s):  
Nasser S. Al Maskari ◽  
Ahmad Sari ◽  
Md Mofazzal Hossain ◽  
Ali Saeedi ◽  
Quan Xie

While the effect of polar-oil component on oil-brine-carbonate system wettability has been extensively investigated, there has been little quantitative analysis of the effect of non-polar components on system wettability, in particular as a function of pH. In this context, we measured the contact angle of non-polar oil on calcite surface in the presence of 10,000 ppm NaCl at pH values of 6.5, 9.5 and 11. We also measured the adhesion of non-polar oil group (–CH3) and calcite using atomic force microscopy (AFM) under the same conditions of contact angle measurements. Furthermore, to gain a deeper understanding, we performed zeta potential measurements of the non-polar oil-brine and brine-calcite interfaces, and calculated the total disjoining pressure. Our results show that the contact angle decreases from 125° to 78° with an increase in pH from 6.5 to 11. AFM measurements show that the adhesion force decreases with increasing pH. Zeta potential results indicate that an increase in pH would change the zeta potential of the non-polar oil-brine and calcite-brine interfaces towards more negative values, resulting in an increase of electrical double layer forces. The total disjoining pressure and results of AFM adhesion tests predict the same trend, showing that adhesion forces decrease with increasing pH. Our results show that the pH increase during low-salinity waterflooding in carbonate reservoirs would lift off non-polar components, thereby lowering residual oil saturation. This physiochemical process can even occur in reservoirs with low concentration of polar components in crude oils.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 900
Author(s):  
Maria Vardaki ◽  
Aida Pantazi ◽  
Ioana Demetrescu ◽  
Marius Enachescu

In this work we present the results of a functional properties assessment via Atomic Force Microscopy (AFM)-based surface morphology, surface roughness, nano-scratch tests and adhesion force maps of TiZr-based nanotubular structures. The nanostructures have been electrochemically prepared in a glycerin + 15 vol.% H2O + 0.2 M NH4F electrolyte. The AFM topography images confirmed the successful preparation of the nanotubular coatings. The Root Mean Square (RMS) and average (Ra) roughness parameters increased after anodizing, while the mean adhesion force value decreased. The prepared nanocoatings exhibited a smaller mean scratch hardness value compared to the un-coated TiZr. However, the mean hardness (H) values of the coatings highlight their potential in having reliable mechanical resistances, which along with the significant increase of the surface roughness parameters, which could help in improving the osseointegration, and also with the important decrease of the mean adhesion force, which could lead to a reduction in bacterial adhesion, are providing the nanostructures with a great potential to be used as a better alternative for Ti implants in dentistry.


2010 ◽  
Vol 13 (3) ◽  
pp. 1029-1037 ◽  
Author(s):  
Lijin Xia ◽  
Scott C. Lenaghan ◽  
Mingjun Zhang ◽  
Yu Wu ◽  
Xiaopeng Zhao ◽  
...  

2004 ◽  
Vol 49 (2) ◽  
pp. 183-190 ◽  
Author(s):  
S. Dunn ◽  
S. Impey ◽  
C. Kimpton ◽  
S.A. Parsons ◽  
J. Doyle ◽  
...  

Stainless steel, polymethylmethacrylate and polytetrafluoroethylene coupons were analysed for surface topographical and adhesion force characteristics using tapping mode atomic force microscopy and force-distance microscopy techniques. The two polymer materials were surface modified by polishing with silicon carbide papers of known grade. The struvite scaling rate was determined for each coupon and related to the data gained from the surface analysis. The scaling rate correlated well with adhesion force measurements indicating that lower energy materials scale at a lower rate. The techniques outlined in the paper provide a method for the rapid screening of materials in potential scaling applications.


2020 ◽  
Author(s):  
Kai Li ◽  
Wei Wang ◽  
Zhi-Peng Yu ◽  
Hang Jin ◽  
Yun-Tong Ge ◽  
...  

Abstract In the present work, the interaction mechanism of specific polyelectrolyte multilayers (PEMs), fabricated by layer-by-layer deposition of polydiallyldimethylammonium chloride (PDDA) and poly(sodium 4-styrenesulfonate) (PSS), is studied using atomic force microscopy. The underwater oil-repellency of PSS-capped PEMs was further explored by measuring the interaction forces between tetradecane droplets and PEMs-coated silica substrates under various salinities. The force curves were analyzed following the Stokes–Reynolds–Young–Laplace theoretical model. Desirable consistency was achieved between the experimental and theoretical calculations at low NaCl concentrations (0.1 mM and 1 mM); however, underestimation of the attractive force was found as the NaCl concentration increases to moderate (10 mM) and high (100 mM) levels. Discrepancy analyses and incorporated features toward a reduced surface charge density were considered based on the previous findings of the orientation of anionic benzenesulfonate moieties (Liu et al. in Angew Chem Int Ed 54(16):4851–4856, 2015. https://doi.org/10.1002/anie.201411992). Short-range steric hindrance interactions were further introduced to simulate “brush” effect stemming from nanoscale surface roughness. It is demonstrated in our work that the PSS-capped PEMs remains a stable underwater lipophobicity against high salinity, which renders it potential application in surface wetting modification and anti-fouling.


2016 ◽  
Vol 3 (10) ◽  
pp. 160248 ◽  
Author(s):  
X. Jin ◽  
B. Kasal

This study attempts to address the interpretation of atomic force microscopy (AFM) adhesion force measurements conducted on the heterogeneous rough surface of wood and natural fibre materials. The influences of wood surface roughness, tip geometry and wear on the adhesion force distribution are examined by cyclic measurements conducted on wood surface under dry inert conditions. It was found that both the variation of tip and surface roughness of wood can widen the distribution of adhesion forces, which are essential for data interpretation. When a common Si AFM tip with nanometre size is used, the influence of tip wear can be significant. Therefore, control experiments should take the sequence of measurements into consideration, e.g. repeated experiments with used tip. In comparison, colloidal tips provide highly reproducible results. Similar average values but different distributions are shown for the adhesion measured on two major components of wood surface (cell wall and lumen). Evidence supports the hypothesis that the difference of the adhesion force distribution on these two locations was mainly induced by their surface roughness.


Processes ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 358
Author(s):  
Hongling Zhang ◽  
Jinshao Ye ◽  
Huaming Qin ◽  
Xujun Liang ◽  
Yan Long

Triphenyltin (TPT) has severely polluted the environment, and it often coexists with metal ions, such as Cu2+. This paper describes the cell’s molecular recognition of TPT, the interaction between TPT recognition and Cu2+ biosorption, and their effect on cell permeability. We studied the recognition of TPT by Bacillus thuringiensis cells and the effect of TPT recognition on Cu2+ biosorption by using atomic force microscopy to observe changes in cell surface mechanical properties and cellular morphology and by using flow cytometry to determine the cell growth status and cell permeability. The results show that B. thuringiensis can quickly recognize different media. The adhesion force of cells in contact with Tween 80 was significantly reduced to levels that were much lower than that of cells in contact with PBS. Conversely, the cell surface adhesion force increased as TPT became more degraded. B. thuringiensis cells maintained their original morphology after 48 h of TPT treatment. The amount of Cu2+ adsorption by TPT-treated cells was positively correlated with the surface adhesion force (r = 0.966, P = 0.01). The cell adhesion force significantly decreased after Cu2+ adsorption, and cell recognition of TPT and/or Cu2+ hindered the entrance of 2’,7’-dichlorodihydrofluorescein diacetate (DCFH-DA) into the cell. The initial diffusion time of DCFH-DA into cells treated by PBS, Cu2+, TPT, and TPT+Cu2+ was 4, 10, 30, and 30 min, respectively, and the order of the fluorescence intensity was PBS >> Cu2+ > TPT > TPT+Cu2+. We conclude that changes in the cell surface properties of the microbe during recognition of pollutants depend on the contaminant’s properties. B. thuringiensis recognized TPT and secreted intracellular substances that not only enhanced the adsorption of Cu2+, but also formed a “barrier” on the cell surface that reduced permeability. These findings provide a novel insight into the mechanism of microbial removal of pollutants.


2020 ◽  
Vol 130 (3) ◽  
pp. 36001
Author(s):  
M. Herzberg ◽  
S. Dobberschütz ◽  
D. Okhrimenko ◽  
N. E. Bovet ◽  
M. P. Andersson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document