scholarly journals Geopolymer Synthesis Using Garnet Tailings from Molybdenum Mines

Minerals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 48 ◽  
Author(s):  
An Wang ◽  
Hongzhao Liu ◽  
Xiaofei Hao ◽  
Yang Wang ◽  
Xueqin Liu ◽  
...  

Garnet tailings obtained in large quantities from molybdenum ore beneficiation are regarded as industrial waste, which not only occupies large areas of land but also causes environmental issues and ecological fines. Preparing garnet tailings based geopolymers (GTGs) is one of the efficient methods to recycle and utilize garnet mine tailings. In this work, geopolymers were synthesized using garnet tailing (GT) and metakaolin (MK) as the main precursors and sodium silicate as the alkali-activation agent. The effect of MK and alkali activator dosage, as well as curing temperature on the compression strength of GTGs were analyzed in detail. Results showed that the maximum strength (46 MPa, 3 days) was reached at a 20 wt % MK dosage with 35% sodium silicate addition cured at room temperature. The microstructure and phase composition of GTGs were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR), which confirmed the formation of an amorphous geopolymer gel. Lastly, it can be concluded that the garnet tailing is a promising material for geopolymer production, as an alternative for its utilization.

2002 ◽  
Vol 16 (06n07) ◽  
pp. 1047-1051
Author(s):  
JIANPING MA ◽  
ZHIMING CHEN ◽  
GANG LU ◽  
MINGBIN YU ◽  
LIANMAO HANG ◽  
...  

Intense photoluminescence (PL) has been observed at room temperature from the polycrystalline SiC samples prepared from carbon-saturated Si melt at a temperature ranging from 1500 to 1650°C. Composition and structure of the samples have been confirmed by means of X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. PL measurements with 325 nm UV light excitation revealed that the room temperature PL spectrum of the samples consists of 3 luminescent bands, the peak energies of which are 2.38 eV, 2.77 eV and 3.06 eV, respectively. The 2.38 eV band is much stronger than the others. It is suggested that some extrinsic PL mechanisms associated with defect or interface states would be responsible to the intensive PL observed at room temperature.


2013 ◽  
Vol 634-638 ◽  
pp. 2358-2361
Author(s):  
Jun Cong Wei ◽  
Li Rong Yang

The effects of Si3N4 addition on the room temperature physical properties and thermal shock resistance properties of corundum based refractory castables were investigated using brown corundum, white corundum and alumina micropowder as the starting materials and pure calcium aluminate as a binder. The phase composition, microstructure, mechanical properties of corundum based castables were investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that as the increase in Si3N4 addition, the bulk density decreased and apparent porosity increased, the cold strength deduced. However, the residual strength rate increased. That is, the thermal shock resistance was improved. This is because even though the introduction of Si3N4 inhibited the sintering of material and deduced the compactness, microcracks were produced in the materials due to a difference in thermal expansion coefficient. So the thermal shock resistance of corundum based castable was improved.


2019 ◽  
Vol 33 (03) ◽  
pp. 1950027 ◽  
Author(s):  
Jiaxiang Chen ◽  
Xiaopeng Jia ◽  
Yuewen Zhang ◽  
Haiqiang Liu ◽  
Baomin Liu ◽  
...  

The polycrystalline skutterudite [Formula: see text] were successfully synthesized from 1.5 GPa to 3.5 GPa by the high pressure and high temperature (HPHT) method. Negative Seebeck coefficient confirmed the n-type conductivity of all samples. The phase compositions of samples were investigated by X-ray diffraction (XRD) and the microstructures were observed by scanning electron microscopy (SEM). It was found that the grains appeared smaller and the grain boundaries became more abundant when pressures were higher. We measured the electrical properties from room temperature to 723 K. Both the electrical resistivity and absolute value of Seebeck coefficient increase with the increasing synthetic pressure. At 723 K, the maximum power factor of [Formula: see text] was obtained for the sample synthesized under 3 GPa. The maximum ZT value of 0.61 was reached by [Formula: see text] synthesized under 3 GPa and measured at 723 K.


Author(s):  
Brijesh Pare ◽  
Satish Piplode ◽  
Vaishali Joshi

Flower like bismuth oxy chloride (BiOCl) was successfully synthesized by a simple hydrolytic method at room temperature. The precursor and as-prepared samples were characterized by X-ray diffraction (XRD), High Resolution Field Emission Scanning Electron Microscope (HR FESEM). The results indicated that the as-prepared BiOCl sample is self-assembled hierarchically with nano sheets. The photocatalytic activity of BiOCl was tested on the degradation of the Oxamyl (OM) under solar light irradiation. The results showed that pesticide molecules could be efficiently degraded over BiOCl under solar light irradiation. All the experiment were carried out in the following reaction condition, [OM] = 10-4 mol dm-3, BiOCl NPs= 40mg/50ml, pH= 6.3. Effect of operational parameter such as concentration of H2O2, K2S2O8, FeCl3, Fenton’s reagent (Fe3+/H2O2) and N2, O2 purging on the photocatalytic degradation was observed.


2021 ◽  
Vol 12 (5) ◽  
pp. 6580-6588

Dicalcium phosphate dihydrate (DCPD) nanoparticles, also known as brushite, are considered an important bioceramic compound. In this study, brushite was prepared from Moroccan phosphogypsum (PG) using a new sol-gel method. A two-step technique undergoes the synthesis of brushite, the preparation of anhydrite from PG followed by adding phosphoric acid in the presence of sodium hydroxide. The morphology, the chemical composition, and the crystallites size were obtained using Scanning Electron Microscopy (SEM-EDAX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR), respectively. According to the Debye-Scherrer equation, these characterization methods indicated that the synthesized brushite was highly pure according to the Ca/P ratio of 1.14 and an average crystallites size estimated at 66 nm. These results proved that the brushite was successfully synthesized from Moroccan phosphogypsum.


2012 ◽  
Vol 1444 ◽  
Author(s):  
Robert M. Harker ◽  
Afiya H. Chohollo

ABSTRACTIdentical samples of uranium coupons were prepared and each exposed to hydrogen for different times (where this time is significantly less than a classically understood ‘induction time’). Samples were prepared from rolled depleted uranium stock: as-received oxide was removed on all surfaces and two faces (~12x12 mm) were polished to a sub-micron standard. Samples were individually taken through a Vacuum Thermal Pre-Treatment cycle from room temperature to 200°C to the reaction temperature (80°C) over 40 hours and subsequently exposed to 10 mbar O2 for 24 hours. After O2 was removed, the samples were exposed to hydrogen for pre-determined times of up to 48 minutes. Examination of the samples by Scanning Electron Microscopy (SEM) has, as expected, identified small features protruding from the surface believed to have been caused by sub-surface precipitation of UH3. In general these features are circular and isolated from each other, have a diameter of less than 3μm and appear as either ‘flat-topped’ or ‘domed’ morphology. In addition, longer time exposure samples show a predominance of ‘area attack’ where coalesced sub-surface precipitation appears to be confined to particular metal grains. X-Ray Diffraction (XRD) data show an increase in the quantity of UH3 with time.


2014 ◽  
Vol 775-776 ◽  
pp. 210-215
Author(s):  
Danúbia Lisbôa da Costa ◽  
Romualdo Rodrigues Menezes ◽  
Gelmires Araújo Neves ◽  
Sandro Marden Torres

Geopolymers, also known as inorganic polymers, are aluminosilicates with cementing characteristics that have great application potential. They are produced by the alkaline activation of aluminosilicates precursors such as industrial wastes, calcined clays, natural minerals, among others and have their properties intimately associated to characteristics of the precursor materials and curing conditions. In this sense, this study aims to evaluate the mechanical behavior of geopolymers obtained from metakaolin according to the curing temperature. The geopolymerization was reached by the mixture of metakaolin with NaOH and the curing of the specimens was held at room temperature, 60°C and 100°C. The specimens were characterized by X-ray diffraction, mercury intrusion porosimetry, and SEM. The mechanical strength was determined by flexural test. The results show that the process of geopolymerization suffers a direct influence of the curing temperature used.


2017 ◽  
Vol 12 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Siriporn Sirikingkaew ◽  
Nuta Supakata

This study presents the development of geopolymer bricks synthetized from industrial waste, including fly ash mixed with concrete residue containing aluminosilicate compound. The above two ingredients are mixed according to five ratios: 100:0, 95:5, 90:10, 85:15, and 80:20. The mixture's physico-mechanical properties, in terms of water absorption and the compressive strength of the geopolymer bricks, are investigated according to the TIS 168-2546 standard. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses are used to investigate the microstructure and the elemental and phase composition of the brick specimens. The results indicate that the combination of fly ash and concrete residue represents a suitable approach to brick production, as required by the TIS 168–2546 standard.


2016 ◽  
Vol 859 ◽  
pp. 18-23 ◽  
Author(s):  
Li Ping Zhao ◽  
Wen Hong Tao ◽  
Xing Hua Fu ◽  
Wen Zhe Cao ◽  
Guo Yuan Cheng ◽  
...  

(Ba0.5Sr0.5)1-xMnxTiO3(x=0,0.01,0.03,0.05)ceramics were prepared via a new sol-gel method with titannium oxide, strontium nitrate, barium nitrate and manganous nitrate as raw materials.The effect of Mn doping on the microstructure and dielectric properties of the BST were characterized by field scanning electron microscopy,x-ray diffraction and impedance analyser.It was found that the dopted ions could not alter the basic crystal strcuture and they only improved the material properties as modified ions when x≤0.3.The (Ba0.5Sr0.5)1-xMnxTiO3 ceramics sintered at 1250°C for 2h exhibited good dielectric properties(er=1330,tand=0.03)at room temperature and f=1KHz when x=0.03 and the grains were regular and uniform ,indicating a dense microstrcture.


2004 ◽  
Vol 848 ◽  
Author(s):  
Olivier Durupthy ◽  
Saïd Es-salhi ◽  
Nathalie Steunou ◽  
Thibaud Coradin ◽  
Jacques Livage

ABSTRACTVarious cations (Li+, Na+, K+, NH4+, Cs+, Mg2+, Ca2+, Ba2+) were introduced during the formation of a V2O5. nH2O gel. Cation intercalated Xy V2O5. nH2O (y = 0.3 for X = Li+, Na+, K+, NH4+ or y = 0.15 for Mg2+, Ca2+, Ba2+) were first obtained at room temperature but some of them evolve upon ageing into a new phase: XV3O8. nH2O for X = Na+, K+, NH4+ and Cs+ or XV6O16. nH2O for X = Mg2+, Ca2+, Ba2+. All the vanadium oxide phases were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and infrared spectroscopy (IR); the supernatant solutions were analysed by 51V NMR spectroscopy. These vanadium oxide phases exhibit a layered structure with cations and water molecules intercalated within the interlayer space. The formation of the different phases depends mainly on the pH of the supernatant solution and on the nature of the cation.


Sign in / Sign up

Export Citation Format

Share Document