scholarly journals Ultrasound-Assisted Extraction of Polysaccharides from Volvariella volvacea: Process Optimization and Structural Characterization

Molecules ◽  
2018 ◽  
Vol 23 (7) ◽  
pp. 1706 ◽  
Author(s):  
Feng-Jie Cui ◽  
Li-Sun Qian ◽  
Wen-Jing Sun ◽  
Jin-Song Zhang ◽  
Yan Yang ◽  
...  

The aims of the present study were to optimize the operational parameters to maximize the yield of ultrasound-assisted polysaccharide extraction from Volvariella volvacea (straw mushroom) fruiting bodies by using for the first time one-factor-at-a-time and three-level Box-Behnken factorial designs. A maximum polysaccharide yield of 8.28 ± 0.23% was obtained under the optimized conditions of ultrasound power of 175 W, extraction temperature of 57 °C, extraction time of 33 min, and the ratio of liquid to raw material of 25:1, respectively. Compared to the hot-water extraction, the ultrasound-assistance favored the extraction of polysaccharides from V. volvacea for its higher polysaccharide yield and efficiency. Further preliminary polysaccharide structural characterization indicated that ultrasound treatment affected the monosaccharide compositions and ratios, and molecular weight range of polysaccharides extracted from V. volvacea.

2016 ◽  
Vol 16 (1) ◽  
pp. 45 ◽  
Author(s):  
Ike Dayi Febriana ◽  
Heri Septya Kusuma ◽  
Selfina Galan ◽  
Mahfud Mahfud

Azo dyes are synthetic organic dyes which have azo group (-N=N-) as chromophore. Waste of azo dyes have not been able to overcome completely so that requires solutions of natural dye. Raw material of natural dye can be obtained from Swietenia mahagoni. Natural dye can be extracted by ultrasound-assisted extraction (UAE) method. The pupose of this research is to study the factor that influence UAE. Observed factor is influence of extraction temperature to the yield of natural dye. This research was conducted using ratio of material to solvent of 0.05 g/L with extraction time at 40 minute. Extraction temperature was observed at 30, 40, and 50oC. Ultrasonic wave that used for this research at 40 kHz. The result is increasing temperature will be allow the increasing trend of yield. The result indicate that there is about 9.2748% improvement in the yield of extract due to increasing extraction temperature from 30oC to 50oC


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2884
Author(s):  
Ceferino Carrera ◽  
María José Aliaño-González ◽  
Jaime Rodríguez-López ◽  
Marta Ferreiro-González ◽  
Fernando Ojeda-Copete ◽  
...  

Erica australis plants have been used in infusions and folk medicine for years for its diuretic and antiseptic properties and even for the treatment of infections. In addition, a recently published thorough study on this species has demonstrated its antioxidant, antibiotic, anti-inflammatory, anticarcinogenic and even antitumoral activities. These properties have been associated with the high content of anthocyanins in E. australis leaves and flowers. The aim of the present research is to optimize an ultrasound-assisted extraction methodology for the recovery of the anthocyanins present in E. australis flowers. For that purpose, a Box Behnken design with response surface methodology was employed, and the influence of four variables at different values was determined: namely, the composition of the extraction solvents (0–50% MeOH in water), the pH level of those solvents (3–7), the extraction temperature (10–70 °C), and the sample:solvent ratio (0.5 g:10 mL–0.5 g:20 mL). UHPLC-UV-vis has been employed to quantify the two major anthocyanins detected in the samples. The extraction optimum conditions for 0.5 g samples were: 20 mL of solvent (50% MeOH:H2O) at 5 pH, with a 15 min extraction time at 70 °C. A precision study was performed and the intra-day and inter-day relative standard deviations (RSDs) obtained were 3.31% and 3.52%, respectively. The developed methodology has been successfully applied to other Erica species to validate the suitability of the method for anthocyanin extraction.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1231
Author(s):  
Da Hye Gam ◽  
Ji Woo Hong ◽  
Jun Hee Kim ◽  
Jin Woo Kim

Response surface methodology was employed to optimize the ultrasound-assisted extraction (UAE) conditions for simultaneous optimization of dependent variables, including DPPH radical scavenging activity (RSA), tyrosinase activity inhibition (TAI), and collagenase activity inhibition (CAI) of peanut shell extracts. The effects of the main variables including extraction time (5.0~55.0 min, X1), extraction temperature (26.0~94.0 °C, X2), and ethanol concentration (0.0%~99.5%, X3) were optimized. Based on experimental values from each condition, quadratic regression models were derived for the prediction of optimum conditions. The coefficient of determination (R2) of the independent variable was in the range of 0.89~0.96, which demonstrates that the regression model is suitable for the prediction. In predicting optimal UAE conditions based on the superimposing method, extraction time of 31.2 min, extraction temperature of 36.6 °C, and ethanol concentration of 93.2% were identified. Under these conditions, RSA of 74.9%, TAI of 50.6%, and CAI of 86.8% were predicted, showing good agreement with the experimental values. A reverse transcription polymerase chain reaction showed that peanut shell extract decreased mRNA levels of tyrosinase-related protein-1 and matrix metalloproteinase-3 genes in B16-F0 cell. Therefore, we identified the skin-whitening and anti-wrinkle effects of peanut shell extracts at protein as well as gene expression levels, and the results show that peanut shell is an effective cosmetic material for skin-whitening and anti-wrinkle effects. Based on this study, peanut shell, which was considered a byproduct, can be used for the development of healthy foods, medicines, and cosmetics.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 864 ◽  
Author(s):  
Yuan Fu ◽  
Shang Lin ◽  
Min Lu ◽  
Si-Yu Wei ◽  
Jia Zhou ◽  
...  

In the present study, an improved fluorometric assay based on aniline blue dye for the specific, accurate, and rapid quantification of 1,3-β-glucans in edible mushrooms was developed and fully validated. Furthermore, the improved method was successfully applied for the quantitative evaluation of water soluble 1,3-β-glucans extracted from Dictyophora indusiata by ultrasound-assisted extraction (UAE) with response surface methodology. Results showed that the improved method exhibited high specificity, accuracy, precision, repeatability, and stability, as well as a wide calibration range of 10–600 µg/mL (R2 > 99.9%). The maximum extraction yields of water soluble 1,3-β-glucans (1.20%) and total polysaccharides (5.41%) were achieved at the optimized extraction parameters as follows: ultrasound amplitude (56%), ultrasound extraction time (15 min), and ratio of liquid to raw material (22 mL/g). The results suggest that the improved fluorometric assay has great potential to be used as a routine method for the quantitative evaluation of 1,3-β-glucans in edible mushrooms and that the UAE method is effective for the extraction of 1,3-β-glucans from edible mushrooms.


Antioxidants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 200 ◽  
Author(s):  
Yue Zhou ◽  
Xiao-Yu Xu ◽  
Ren-You Gan ◽  
Jie Zheng ◽  
Ya Li ◽  
...  

The seed coat of red sword bean (Canavalia gladiata (Jacq.) DC.) is rich in antioxidant polyphenols. It is often discarded as a byproduct with the consumption of red sword bean, since it is very thick and not consumed by people. The aim of this study was to develop an ultrasound-assisted extraction method to extract natural antioxidants from the seed coats. The extraction process was optimized by using response surface methodology. After the single-factor experiments, three key factors, including ethanol concentration, liquid/solid ratio, and extraction time, were selected and their interactions were studied using a central composite design. The optimal extraction condition was 60.2% hydroethanol, a liquid/solid ratio of 29.3 mL/g, an extraction time of 18.4 min, an extraction temperature of 50 °C, and ultrasound power of 400 W. Under the optimal conditions, antioxidant activity of the extract was 755.98 ± 10.23 μmol Trolox/g dry weight (DW), much higher than that from maceration (558.77 ± 14.42 μmol Trolox/g DW) or Soxhlet extraction (479.81 ± 12.75 μmol Trolox/g DW). In addition, the main antioxidant compounds in the extract were identified and quantified by high-performance liquid chromatography–diode array detection–tandem mass spectrometry (HPLC–DAD–MS/MS). The concentrations of digalloyl hexoside, methyl gallate, gallic acid, trigalloyl hexoside, and digallic acid were 15.30 ± 0.98, 8.85 ± 0.51, 8.76 ± 0.36, 4.27 ± 0.21, and 2.89 ± 0.13 mg/g DW. This study provides an efficient and green extraction method for the extraction of natural antioxidants from the bean coat of red sword bean. The extract of antioxidants might be added into functional foods or nutraceuticals with potential beneficial functions.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1139 ◽  
Author(s):  
Gabriela Aguilar-Hernández ◽  
María de los Ángeles Vivar-Vera ◽  
María de Lourdes García-Magaña ◽  
Napoleón González-Silva ◽  
Alejandro Pérez-Larios ◽  
...  

The soursop fruit or Annona muricata (A. muricata) fruit is recognized by its bioactive compounds and acetogenins (ACG) are among the most important. The effect of ACGs, with greater importance in health, is that they present anti-tumor activity; however, the methods of extraction of ACGs are very slow and with a high expenditure of solvents. To our knowledge, there is no report of an optimal method for the extraction of acetogenins from the Annonaceae family by ultrasound-assisted extraction (UAE); therefore, the aim was to find the best UEA conditions of acetogenins from A. muricata fruit (peel, pulp, seed, and columella) by using response surface methodology. The effect of amplitude (40%, 70%, and 100%), time (5, 10, and 15 min), and pulse-cycle (0.4, 0.7, and 1 s) of ultrasound at 24 kHz was evaluated on the total acetogenin content (TAC). Optimal extraction conditions of acetogenins (ACGs) with UEA were compared with the extraction of ACGs by maceration. The optimal UEA conditions in the A. muricata pulp and by-products were dependent on each raw material. The highest TAC was found in the seed (13.01 mg/g dry weight (DW)), followed by the peel (1.69 mg/g DW), the pulp (1.67 mg/g DW), and columella (1.52 mg/g DW). The experimental TAC correlated well with the model (Adjusted R2 with values between 0.88 and 0.97). The highest effectiveness in ACG extraction was obtained in seeds and peels using UEA compared to extraction by maceration (993% and 650%, respectively). The results showed that A. muricata by-products are an important source of ACGs and that UAE could be a viable alternative, with high potential for large-scale extraction.


2016 ◽  
Vol 12 (5) ◽  
pp. 439-449 ◽  
Author(s):  
Fan Hou ◽  
Yanwen Wu ◽  
Lina Kan ◽  
Qian Li ◽  
Shuangshuang Xie ◽  
...  

Abstract A comparison of chestnut polysaccharide extraction using ultrasound-assisted extraction (UAE) and hot water extraction (HWE) demonstrated that UAE is superior to HWE due to its higher extraction efficiency. Scanning electron microscopy (SEM), thermogravimetric analysis-differential scanning calorimetry (TGA-DSC) and Fourier-transform infrared spectroscopy (FTIR) were used to characterize the ultrasound-assisted-extracted polysaccharide (UAEP) and hot water-extracted polysaccharide (HWEP). SEM images revealed that the UAEP and chestnut residue were crushed, with particle sizes that were smaller than those of the HWEP, which was related to the breakage of long-chain polysaccharides. TGA-DSC showed a higher transition temperature and enthalpy value for the UAEP than the HWEP, and the FTIR spectrum revealed typical characteristics of polysaccharides, with some differences between the UAEP and HWEP. The evaluation of antioxidant activities showed that the UAEP had stronger antioxidant capacities than the HWEP, regardless of the reducing power and DPPH-, ABTS- and hydroxyl radical-scavenging activities, suggesting that ultrasound is an optimal method to rapidly extract chestnut polysaccharide, a potential natural antioxidant.


2014 ◽  
Vol 955-959 ◽  
pp. 848-854
Author(s):  
Yin Xiang Gao ◽  
Lei Yang ◽  
Yuan Gang Zu ◽  
Li Ping Yao

An ultrasound-assisted procedure for the extraction of pectin from heads ofHelianthus annuusL. (sunflower) was established. A Box–Behnken design (BBD) was employed to optimize the extraction temperature (X1: 30–50°C), extraction time (X2: 20–40 min) and pH (X3: 2.5–3.5) to obtain a high yield of pectin with high degree of esterification (DE) from sunflower heads. Analysis of variance showed that the contribution of a quadratic model was significant for the pectin extraction yield and DE. An optimization study using response surface methodology was performed and 3D response surfaces were plotted from the mathematical model. According to the RSM model, the highest pectin yield (23.11 ± 0.08%) and DE (39.85 ± 0.14%) can be achieved when the UAE process is carried out at 50°C for 40min using a hydrochloric acid solution of pH 3.0. These results suggest that ultrasound-assisted extraction could be a good option for the extraction of functional pectin from sunflower heads at industrial level.


2020 ◽  
Vol 10 (10) ◽  
pp. 3628 ◽  
Author(s):  
Malak Tabib ◽  
Yang Tao ◽  
Christian Ginies ◽  
Isabelle Bornard ◽  
Njara Rakotomanomana ◽  
...  

Almond skin is an important by-product in the almond processing industry, rich in potentially health-promoting phenolic compounds. The objective of this present study is to separate the skin from the almond and extract its polyphenol contents using Ultrasound-Assisted Extraction (UAE) at room temperature. Optimization was performed according to a two-variable central composite design (CCD), and the optimum combination of ultrasonic intensity and extraction temperature was obtained through multi-response optimization: ultrasonic intensity (UI), 9.47 W.cm−2; and temperature, 20 °C for an extraction time of 20 min. Under the above-mentioned conditions, total phenolic content was 258% higher with UAE than silent experiment. Mathematic modelling and microscopic investigations were achieved to enable understanding physical and structural effects of ultrasound on almond skins and comprehension of the mechanism behind the enhancement of mass transfer phenomena. Scanning Electron Microscopy (SEM) showed different acoustic cavitation impacts including fragmentation, sonoporation, and erosion. Extracts were analyzed by ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS), identifying a combination of flavanols, flavanones and non-flavonoids. UAE shows no negative effect on almond proteins and lipids when compared to natural almonds (NS).


Sign in / Sign up

Export Citation Format

Share Document