scholarly journals A One-Pot Ultrasound-Assisted Almond Skin Separation/Polyphenols Extraction and its Effects on Structure, Polyphenols, Lipids, and Proteins Quality

2020 ◽  
Vol 10 (10) ◽  
pp. 3628 ◽  
Author(s):  
Malak Tabib ◽  
Yang Tao ◽  
Christian Ginies ◽  
Isabelle Bornard ◽  
Njara Rakotomanomana ◽  
...  

Almond skin is an important by-product in the almond processing industry, rich in potentially health-promoting phenolic compounds. The objective of this present study is to separate the skin from the almond and extract its polyphenol contents using Ultrasound-Assisted Extraction (UAE) at room temperature. Optimization was performed according to a two-variable central composite design (CCD), and the optimum combination of ultrasonic intensity and extraction temperature was obtained through multi-response optimization: ultrasonic intensity (UI), 9.47 W.cm−2; and temperature, 20 °C for an extraction time of 20 min. Under the above-mentioned conditions, total phenolic content was 258% higher with UAE than silent experiment. Mathematic modelling and microscopic investigations were achieved to enable understanding physical and structural effects of ultrasound on almond skins and comprehension of the mechanism behind the enhancement of mass transfer phenomena. Scanning Electron Microscopy (SEM) showed different acoustic cavitation impacts including fragmentation, sonoporation, and erosion. Extracts were analyzed by ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS), identifying a combination of flavanols, flavanones and non-flavonoids. UAE shows no negative effect on almond proteins and lipids when compared to natural almonds (NS).

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3949
Author(s):  
Katarina Šavikin ◽  
Jelena Živković ◽  
Teodora Janković ◽  
Nada Ćujić-Nikolić ◽  
Gordana Zdunić ◽  
...  

In this study we define the optimal conditions for ultrasound-assisted extraction of bioactive polyphenols from S. raeseri aerial parts using response surface methodology. The influence of ethanol concentration (10–90%), extraction temperature (20–80 °C), extraction time (10–60 min), and solid-to-solvent ratio (1:10–1:50) on total phenolic content as well as on content of individual flavonoids, and hypolaetin and isoscutellarein derivatives was studied. For the experimental design, a central composite design was chosen. In the obtained extracts, the following ranges of targeted compounds were detected: total phenol from 19.32 to 47.23 mg GAE/g dw, HYP from 1.05 to 11.46 mg/g dw, ISC 1 from 0.68 to 10.68 mg/g dw, and ISC 2 from 0.74 to 15.56 mg/g dw. The optimal extraction conditions were set as: ethanol concentration of 65%, extraction time of 50 min, extraction temperature of 63 °C, and solid-to-solvent ratio of 1:40. Contents of TP, HYP, ISC 1, and ISC 2 in optimal extracts were 47.11 mg GAE/g dw, 11.73 mg/g dw, 9.54 mg/g dw, and 15.40 mg/g dw, respectively. Experimentally set values were in good agreement with those predicted by the response surface methodology model, indicating suitability of the used model, as well as the success of response surface methodology in optimizing the conditions of the extraction.


Toxins ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 529 ◽  
Author(s):  
Xiaojun Zhang ◽  
Chengcheng Han ◽  
Si Chen ◽  
Le Li ◽  
Jingjing Zong ◽  
...  

Tetrodotoxin (TTX) is a marine biotoxin that has high scientific value. However, the lack of efficient TTX extraction and preparation methods has led to a scarcity of TTX samples for clinical application. In this study, TTX from the liver of Takifugu pseudommus was ultrasound-assisted extracted with acidified organic solvents. The extraction process was analyzed and optimized by single factor method and response surface methodology (RSM). The optimal extraction conditions predicted by a response surface model were as follows: liquid:material ratio, 2.8:1; extraction temperature, 60 °C; extraction time, 23.3 min. Under these conditions, the extraction of TTX had a yield of 89.65%, and the results were further verified by experimental extraction, and analyzed by ultra performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS). It was found that the extracts of T. pseudommus liver contained TTX and its four analogues at certain proportions (TTX: 10.4%; 5,6,11-trideoxyTTX: 83.3%; 5,11-dideoxyTTX:2.4%; 4,9-anhydro TTX:2.6%; 5-deoxyTTX:1.3%). This study demonstrates a stable and efficient extraction process of TTX from pufferfish liver, which can be helpful for further research and analysis, as well as the utilization of TTX from pufferfish.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2884
Author(s):  
Ceferino Carrera ◽  
María José Aliaño-González ◽  
Jaime Rodríguez-López ◽  
Marta Ferreiro-González ◽  
Fernando Ojeda-Copete ◽  
...  

Erica australis plants have been used in infusions and folk medicine for years for its diuretic and antiseptic properties and even for the treatment of infections. In addition, a recently published thorough study on this species has demonstrated its antioxidant, antibiotic, anti-inflammatory, anticarcinogenic and even antitumoral activities. These properties have been associated with the high content of anthocyanins in E. australis leaves and flowers. The aim of the present research is to optimize an ultrasound-assisted extraction methodology for the recovery of the anthocyanins present in E. australis flowers. For that purpose, a Box Behnken design with response surface methodology was employed, and the influence of four variables at different values was determined: namely, the composition of the extraction solvents (0–50% MeOH in water), the pH level of those solvents (3–7), the extraction temperature (10–70 °C), and the sample:solvent ratio (0.5 g:10 mL–0.5 g:20 mL). UHPLC-UV-vis has been employed to quantify the two major anthocyanins detected in the samples. The extraction optimum conditions for 0.5 g samples were: 20 mL of solvent (50% MeOH:H2O) at 5 pH, with a 15 min extraction time at 70 °C. A precision study was performed and the intra-day and inter-day relative standard deviations (RSDs) obtained were 3.31% and 3.52%, respectively. The developed methodology has been successfully applied to other Erica species to validate the suitability of the method for anthocyanin extraction.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 931
Author(s):  
Cristina Reche ◽  
Carmen Rosselló ◽  
Mónica M. Umaña ◽  
Valeria Eim ◽  
Susana Simal

Valorization of an artichoke by-product, rich in bioactive compounds, by ultrasound-assisted extraction, is proposed. The extraction yield curves of total phenolic content (TPC) and chlorogenic acid content (CAC) in 20% ethanol (v/v) with agitation (100 rpm) and ultrasound (200 and 335 W/L) were determined at 25, 40, and 60 °C. A mathematical model considering simultaneous diffusion and convection is proposed to simulate the extraction curves and to quantify both temperature and ultrasound power density effects in terms of the model parameters variation. The effective diffusion coefficient exhibited temperature dependence (72% increase for TPC from 25 °C to 60 °C), whereas the external mass transfer coefficient and the equilibrium extraction yield depended on both temperature (72% and 90% increases for TPC from 25 to 60 °C) and ultrasound power density (26 and 51% increases for TPC from 0 (agitation) to 335 W/L). The model allowed the accurate curves simulation, the average mean relative error being 5.3 ± 2.6%. Thus, the need of considering two resistances in series to satisfactorily simulate the extraction yield curves could be related to the diffusion of the bioactive compound from inside the vegetable cells toward the intercellular volume and from there, to the liquid phase.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1231
Author(s):  
Da Hye Gam ◽  
Ji Woo Hong ◽  
Jun Hee Kim ◽  
Jin Woo Kim

Response surface methodology was employed to optimize the ultrasound-assisted extraction (UAE) conditions for simultaneous optimization of dependent variables, including DPPH radical scavenging activity (RSA), tyrosinase activity inhibition (TAI), and collagenase activity inhibition (CAI) of peanut shell extracts. The effects of the main variables including extraction time (5.0~55.0 min, X1), extraction temperature (26.0~94.0 °C, X2), and ethanol concentration (0.0%~99.5%, X3) were optimized. Based on experimental values from each condition, quadratic regression models were derived for the prediction of optimum conditions. The coefficient of determination (R2) of the independent variable was in the range of 0.89~0.96, which demonstrates that the regression model is suitable for the prediction. In predicting optimal UAE conditions based on the superimposing method, extraction time of 31.2 min, extraction temperature of 36.6 °C, and ethanol concentration of 93.2% were identified. Under these conditions, RSA of 74.9%, TAI of 50.6%, and CAI of 86.8% were predicted, showing good agreement with the experimental values. A reverse transcription polymerase chain reaction showed that peanut shell extract decreased mRNA levels of tyrosinase-related protein-1 and matrix metalloproteinase-3 genes in B16-F0 cell. Therefore, we identified the skin-whitening and anti-wrinkle effects of peanut shell extracts at protein as well as gene expression levels, and the results show that peanut shell is an effective cosmetic material for skin-whitening and anti-wrinkle effects. Based on this study, peanut shell, which was considered a byproduct, can be used for the development of healthy foods, medicines, and cosmetics.


2020 ◽  
Vol 16 (1-2) ◽  
Author(s):  
Cassiano Brown da Rocha ◽  
Caciano Pelayo Zapata Noreña

AbstractThe grape pomace is a by-product from the industrial processing of grape juice, which can be used as a source of bioactive compounds. The aim of this study was to separate the phenolic compounds from grape pomace using an acidic aqueous solution with 2 % citric acid as a solvent, using both ultrasound-assisted extraction, with powers of 250, 350 and 450 W and times of 5, 10 and 15 min, and microwave-assisted extraction using powers of 600, 800 and 1,000 W and times of 5, 7 and 10 min. The results showed that for both methods of extraction, the contents of total phenolic compounds and antioxidant activity by ABTS and DPPH increased with time, and microwave at 1,000 W for 10 min corresponded to the best extraction condition. However, the contents of phenolic compounds and antioxidant activity were lower than exhaustive extraction using acidified methanol solution.


2014 ◽  
Vol 12 (8) ◽  
pp. 858-867 ◽  
Author(s):  
Christina Zălaru ◽  
Claudia Crişan ◽  
Ioan Călinescu ◽  
Zenovia Moldovan ◽  
Isabela Ţârcomnicu ◽  
...  

AbstractThe aim of this research was to investigate the chemical composition of Coreopsis tinctoria Nutt. fruits extract, to highlight the potential of ultrasound assisted extraction in the fast preparation of extracts rich in polyphenols using different solvents (55%, 78% and 96% hydrous ethanol) and to evaluate the antioxidant potential of formulated extracts. LC-MS/MS was used to characterize the ethanolic extract from Coreopsis tinctoria Nutt. dried fruits. The extract contains different flavonoids (marein, flavanomarein, quercetagetin-7-O-glucoside, okanin aurone, leptosidin, luteolin, apigenin) and phenolic acids (chlorogenic acid, caffeic acid). Several parameters that could affect extraction efficiency were evaluated. Finally, this study focused on determination of plant extracts total phenolic content and their antioxidant capacity. The experimental results allowed the selection of the optimum operating parameters leading to the highest total polyphenolic content, expressed as gallic acid equivalents, and avoiding the degradation of phenolic compounds (ethanol 55%; extraction temperature 323.15 K, extraction time 30 min, liquid/solid ratio 20/1). A good relationship between total phenolic content and antioxidant capacity was obtained.


2021 ◽  
Vol 43 ◽  
pp. e55564
Author(s):  
Suelen Siqueira dos Santos ◽  
Carolina Moser Paraíso ◽  
Letícia Misturini Rodrigues ◽  
Grasiele Scaramal Madrona

Blueberry and raspberry pomace are a rich source of bioactive compounds that have not been commercially utilized yet, and ultrasound-assisted technology can efficiently extract these compounds. Also, the use of water as a solvent added to the ultrasound-assisted technology improves this eco-friendly process. Therefore, an aqueous eco-friendly extraction, including extraction time and ultrasound presence or absence (conventional extraction) was performed in order to extract bioactive compounds from blueberry and raspberry pomace. Response parameters included levels of anthocyanins, phenolic compounds, and flavonoids, and antioxidant activity determined by DPPH, ABTS, and FRAP methods. Analysis of variance results indicated that ultrasound-assisted extraction for 45 min. was feasible to extract the bioactive compounds. The antioxidant content of the extract obtained by the ultrasound-assisted process was 1.4 times higher on average and the total phenolic concentration was 1.6 times higher (for blueberry 5.02 and for raspberry 2.53 mg gallic acid equivalent/g) compared with those obtained by the conventional process. Thus, the ultrasound-assisted extraction method can be a profitable alternative to extract bioactive compounds from blueberry and raspberry pomace, as it is energy efficient, requires fewer chemicals, and produces less effluent. This eco-friendly technology is therefore viable for food, nutraceutical, and cosmetic industries, and also for reducing food waste.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 326 ◽  
Author(s):  
María José Aliaño-González ◽  
Estrella Espada-Bellido ◽  
Marta Ferreiro-González ◽  
Ceferino Carrera ◽  
Miguel Palma ◽  
...  

Two optimized methods for ultrasound-assisted extraction were evaluated for the extraction of two types of acai bioactive compounds: Total anthocyanins (TAs) and total phenolic compounds (TPCs). For the extraction optimization, a Box Behnken factorial design of different variables in the following intervals was used: Methanol-water (25%–75%) for solvent composition, temperatures between 10 and 70 °C, amplitude in the range between 30% and 70% of the maximum amplitude −200 W), extraction solvent pH (2–7), the ratio for sample-solvent (0.5 g:10 mL–0.5 g:20 mL), and cycle between 0.2 and 0.7 s. The extraction kinetics were studied using different periods between 5 and 30 min. TA and TPC were analyzed by UHPLC and the Folin–Ciocalteu method, respectively. Optimized conditions for TA were: 51% MeOH in water, 31 °C temperature, pH 6.38, cycle 0.7 s, 65% amplitude, and 0.5 g:10 mL of sample-solvent ratio. Optimized conditions for the TPC were: 49% MeOH in water, 41 °C temperature, pH 6.98, cycle 0.2 s, 30% amplitude, and 0.5 g:10 mL of sample-solvent ratio. Both methods presented a relative standard deviation below 5% in the precision study. The suitability of the methods was tested in real samples. It was confirmed that these methods are feasible for the extraction of the studied bioactive compounds from different açai matrices.


Antioxidants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 200 ◽  
Author(s):  
Yue Zhou ◽  
Xiao-Yu Xu ◽  
Ren-You Gan ◽  
Jie Zheng ◽  
Ya Li ◽  
...  

The seed coat of red sword bean (Canavalia gladiata (Jacq.) DC.) is rich in antioxidant polyphenols. It is often discarded as a byproduct with the consumption of red sword bean, since it is very thick and not consumed by people. The aim of this study was to develop an ultrasound-assisted extraction method to extract natural antioxidants from the seed coats. The extraction process was optimized by using response surface methodology. After the single-factor experiments, three key factors, including ethanol concentration, liquid/solid ratio, and extraction time, were selected and their interactions were studied using a central composite design. The optimal extraction condition was 60.2% hydroethanol, a liquid/solid ratio of 29.3 mL/g, an extraction time of 18.4 min, an extraction temperature of 50 °C, and ultrasound power of 400 W. Under the optimal conditions, antioxidant activity of the extract was 755.98 ± 10.23 μmol Trolox/g dry weight (DW), much higher than that from maceration (558.77 ± 14.42 μmol Trolox/g DW) or Soxhlet extraction (479.81 ± 12.75 μmol Trolox/g DW). In addition, the main antioxidant compounds in the extract were identified and quantified by high-performance liquid chromatography–diode array detection–tandem mass spectrometry (HPLC–DAD–MS/MS). The concentrations of digalloyl hexoside, methyl gallate, gallic acid, trigalloyl hexoside, and digallic acid were 15.30 ± 0.98, 8.85 ± 0.51, 8.76 ± 0.36, 4.27 ± 0.21, and 2.89 ± 0.13 mg/g DW. This study provides an efficient and green extraction method for the extraction of natural antioxidants from the bean coat of red sword bean. The extract of antioxidants might be added into functional foods or nutraceuticals with potential beneficial functions.


Sign in / Sign up

Export Citation Format

Share Document