scholarly journals Antimicrobial Potential of Silver Nanoparticles Synthesized Using Medicinal Herb Coptidis rhizome

Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2268 ◽  
Author(s):  
Garima Sharma ◽  
Ju-Suk Nam ◽  
Ashish Sharma ◽  
Sang-Soo Lee

Coptidis rhizome contains several alkaloids that are bioactive agents of therapeutic value. We propose an eco-friendly method to synthesize biocompatible silver nanoparticles (AgNPs) using the aqueous extract of Coptidis rhizome. Silver ions were reduced to AgNPs using the aqueous extract of Coptidis rhizome, indicating that Coptidis rhizome can be used for the biosynthesis of AgNPs. The time and the concentration required for conversion of silver ions into AgNPs was optimized using UV-absorbance spectroscopy and inductively coupled plasma spectroscopy (ICP). Biosynthesized AgNPs showed a distinct UV-Visible absorption peak at 420 nm. ICP analysis showed that the time required for the completion of biosynthesis was around 20 min. Microscopic images showed that nanoparticles synthesized were of spherical shape and the average diameter of biosynthesized AgNPs was less than 30 nm. XRD analysis also confirmed the size of AgNps and revealed their crystalline nature. The interaction of AgNPs with phytochemicals present in Coptidis rhizome extract was observed in FTIR analysis. The antimicrobial property of AgNPs was evaluated using turbidity measurements. Coptidis rhizome-mediated biosynthesized AgNPs showed significant anti-bacterial activities against Escherichia coli and Staphylococcus aureus that are commonly involved in various types of infections, indicating their potential as an effective anti-bacterial agent.

Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2269 ◽  
Author(s):  
Garima Sharma ◽  
Ju-Suk Nam ◽  
Ashish Ranjan Sharma ◽  
Sang-Soo Lee

Coptidis rhizome contains several alkaloids that are bioactive agents of therapeutic value. We propose an eco-friendly method to synthesize biocompatible silver nanoparticles (AgNPs) using the aqueous extract of Coptidis rhizome. Silver ions were reduced to AgNPs using the aqueous extract of Coptidis rhizome, indicating that Coptidis rhizome can be used for the biosynthesis of AgNPs. The time and the concentration required for conversion of silver ions into AgNPs was optimized using UV-absorbance spectroscopy and inductively coupled plasma spectroscopy (ICP). Biosynthesized AgNPs showed a distinct UV-Visible absorption peak at 420 nm. ICP analysis showed that the time required for the completion of biosynthesis was around 20 min. Microscopic images showed that nanoparticles synthesized were of spherical shape and the average diameter of biosynthesized AgNPs was less than 30 nm. XRD analysis also confirmed the size of AgNps and revealed their crystalline nature. The interaction of AgNPs with phytochemicals present in Coptidis rhizome extract was observed in FTIR analysis. The antimicrobial property of AgNPs was evaluated using turbidity measurements. Coptidis rhizome-mediated biosynthesized AgNPs showed significant anti-bacterial activities against Escherichia coli and Staphylococcus aureus that are commonly involved in various types of infections, indicating their potential as an effective anti-bacterial agent.


2016 ◽  
Vol 4 (3) ◽  
pp. 254-258 ◽  
Author(s):  
Mona Hussein Ibraheim ◽  
A.A. Ibrahiem ◽  
T. R. Dalloul

Green synthesis of silver nanoparticles (AgNPs) from silver nitrate was carried out using aqueous Pomegranate juice extract (PJE) as a reducing agent. The formation of AgNPs was characterized by UV-visible (UV–vis) spectroscopy, transmission electron microscopy (TEM), Fourier transforms infrared spectroscopy and X-ray diffraction (XRD). Surface Plasmon resonance (SPR) of ∼420-423 nm confirmed the earlier formation of AgNPs. TEM and XRD analysis showed that the AgNPs with an average diameter of 23 nm are crystalline in nature and have face-centered cubic geometry. The antibacterial efficiency of AgNPs against Escherchia coli and Staphylococcus aureus showed high level of inhibition. Further, the zone of inhibition increased with the increase in the concentration of silver nanoparticles. These studies are quite useful as it shows the utility of green nanotechnology for the synthesis of silver nanoparticles without any toxic residuals and byproducts. The efficient antimicrobial activity of biosynthesized AgNPs proves the application potential in the area of nano-medicine.Int J Appl Sci Biotechnol, Vol 4(3): 254-258


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sudip Some ◽  
Onur Bulut ◽  
Kinkar Biswas ◽  
Anoop Kumar ◽  
Anupam Roy ◽  
...  

Abstract Herein, we report the synthesis of silver nanoparticles (AgNPs) by a green route using the aqueous leaf extract of Morus indica L. V1. The synthesized AgNPs exhibited maximum UV-Vis absorbance at 460 nm due to surface plasmon resonance. The average diameter (~54 nm) of AgNPs was measured from HR-TEM analysis. EDX spectra also supported the formation of AgNPs, and negative zeta potential value (−14 mV) suggested its stability. Moreover, a shift in the carbonyl stretching (from 1639 cm−1 to 1630 cm−1) was noted in the FT-IR spectra of leaf extract after AgNPs synthesis which confirm the role of natural products present in leaves for the conversion of silver ions to AgNPs. The four bright circular rings (111), (200), (220) and (311) observed in the selected area electron diffraction pattern are the characteristic reflections of face centered cubic crystalline silver. LC-MS/MS study revealed the presence of phytochemicals in the leaf extract which is responsible for the reduction of silver ions. MTT assay was performed to investigate the cytotoxicity of AgNPs against two human cell lines, namely HepG2 and WRL-68. The antibacterial study revealed that MIC value of the synthesized AgNPs was 80 µg/ml against Escherichia coli K12 and Staphylococcus aureus (MTCC 96). Finally, the synthesized AgNPs at 10 µg/ml dosages showed beneficial effects on the survivability, body weights of the Bombyx mori L. larvae, pupae, cocoons and shells weights via enhancing the feed efficacy.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Osvelia E. Rodríguez-Luis ◽  
Rene Hernandez-Delgadillo ◽  
Rosa Isela Sánchez-Nájera ◽  
Gabriel Alejandro Martínez-Castañón ◽  
Nereyda Niño-Martínez ◽  
...  

Nanotechnology is a new discipline with huge applications including medicine and pharmacology industries. Although several methods and reducing agents have been employed to synthesize silver nanoparticles, reactive chemicals promote toxicity and nondesired effects on the human and biological systems. The objective of this work was to synthesize silver nanoparticles fromGlycyrrhiza glabraandAmphipterygium adstringensextracts and determine their bactericidal and antimycotic activities againstEnterococcus faecalisandCandida albicansgrowth, respectively. 1 and 10 mM silver nitrate were mixed with an extract ofGlycyrrhiza glabraandAmphipterygium adstringens.Green silver nanoparticles (AgNPs) were characterized by TEM, Vis-NIR, FTIR, fluorescence, DLS, TGA, and X-ray diffraction (XRD) analysis. Bactericidal and antimycotic activities of AgNPs were determined by Kirby and Bauer method and cell viability MTT assays. AgNPs showed a spherical shape and average size of 9 nm if prepared withGlycyrrhiza glabraextract and 3 nm if prepared withAmphipterygium adstringensextract. AgNPs inhibited the bacterial and fungal growth as was expected, without a significant cytotoxic effect on human epithelial cells. Altogether, these results strongly suggest that AgNPs could be an interesting option to control oral biofilms.


Author(s):  
Karim Samy El-Said ◽  
Ahmed Ahmed El-Barbary ◽  
Hazem M. ElKholy ◽  
Ahmed S. Haidyrah ◽  
Mohamed Betiha ◽  
...  

Reaction of 2-mercapto-3-phenylquinazolin-4(3H)-one (MPQ) with both 4-vinyl benzyl chloride and allyl bromide furnished the reactive heterocyclic monomers 3-phenyl-2-((4-vinylbenzyl) thio) quinazolin-4(3H)-one (PVTQ) and 2-(allylthio)-3-phenylquinazolin-4(3H)-one (APQ), respectively. Copolymerization of PVTQ monomer with styrene and methyl methacrylate in the presence of 2,2′-azobisisobutyronitrile (AIBN) afforded the copolymers PS-co-PPVTQ and PMMA-co-PPVTQ, respectively. Similarly, copolymerization of monomer APQ with styrene and methyl methacrylate (MMA) afforded the copolymers PS-co-PAPQ and PMMA-co-PAPQ, respectively. The resulted copolymers were characterized by using FT-IR, 1H-NMR and GPC techniques. Silver nanocomposites of PS, PMMA, PS-co-PPVTQ, PMMA-co-PPVTQ, PS-co-PAPQ and PMMA-co-PAPQ were synthesized by the addition of silver nitrate into the polymer solution. The reduction of silver ions into silver nanoparticles was performed in DMF and water. Thermogravimetric (TGA) analysis was used to determine the thermal stability of the copolymers and their silver nanocomposites. The X-ray diffraction (XRD) analysis indicated the amorphous structures of the co-polymers and confirmed the formation of silver nanoparticles. The antitumor and antibacterial activities were screened for the copolymers and enhanced by the formation of their silver nanocomposites. In vivo antitumor activity in Ehrlich Ascitic Carcinoma (EAC) mice model showed that PS-co-PPVTQ/Ag NPs, PMMA-co-PPVTQ/Ag NPs, and PMMA-co-PAPQ/Ag NPs displayed promising inhibitory effects against EAC and induce apoptosis against MCF-7 cells.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7325
Author(s):  
Denisa Batir-Marin ◽  
Cornelia Mircea ◽  
Monica Boev ◽  
Ana Flavia Burlec ◽  
Andreia Corciova ◽  
...  

The ethanolic extracts of three Equisetum species (E. pratense Ehrh., E. sylvaticum L. and E. telmateia Ehrh.) were used to reduce silver ions to silver nanoparticles (AgNPs). The synthesized AgNPs were characterized using UV-Vis spectrophotometry, Fourier Transform Infrared Spectroscopy (FTIR), Energy Dispersive X-ray (EDX), Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS) measurements. FTIR data revealed the functional groups of biomolecules involved in AgNPs synthesis, such as O-H, C-H, C=O, C-O, and C-C. EDX spectroscopy was used to highlight the presence of silver, while DLS spectroscopy provided information on the mean diameter of AgNPs, that ranged from 74.4 to 314 nm. The negative Zeta potential values (−23.76 for Ep–AgNPs, −29.54 for Es–AgNPs and −20.72 for Et–AgNPs) indicate the stability of the obtained colloidal solution. The study also focused on establishing the photocatalytic activity of AgNPs, which is an important aspect in terms of removing organic dyes from the environment. The best photocatalytic activity was observed for AgNPs obtained from E. telmateia, which degraded malachite green in a proportion of 97.9%. The antioxidant action of the three AgNPs samples was highlighted comparatively through four tests, with the best overall antioxidant capacity being observed for AgNPs obtained using E. sylvaticum. Moreover, the biosynthesized AgNPs showed promising cytotoxic efficacy against cancerous cell line MG63, the AgNPs obtained from E. sylvaticum L. providing the best result, with a LD50 value around 1.5 mg/mL.


2020 ◽  
Vol 11 (1) ◽  
pp. 8110-8120

The present findings were focused on green synthesis of silver nanoparticles through an aqueous extract of Saraca indica. The stability of the nanoparticle was achieved through the optimization of physico-chemical parameters. The sharp UV-visible absorption maximum at 400 was observed for biological synthesized silver nanoparticles. The spectroscopic analysis was thus used to assess the formation of silver nanoparticles. The AFM analysis did analyze the morphology of the nanocomposite, which was further confirmed through TEM micrograph. The electron micrograph image discloses that silver nanoparticles were polydispersed and dominantly as spherical with size ranges from 40nm to 100nm. The average size distribution was 49nm. The chemical reductions of Ag+ ions were further confirmed through FTIR. The biogenic silver nanoparticle and their drug formulation showed profound antibacterial activity against pathogenic bacteria. The flavonoids rich binding of silver nanoparticle showed great medicinal potential and can be used for the treatment of several harmful infectious diseases. Hence, plant-based metal nanoparticles meet the demand for less toxic formulation during drug development and its delivery.


2011 ◽  
Vol 337 ◽  
pp. 116-119 ◽  
Author(s):  
Dong Mei Zhao ◽  
Qing Mao Feng ◽  
Li Li Lv ◽  
Jian Li

Silver nanoparticles (Ag NPs)/cellulose acetate (CA) composite ultrafine fibers were successfully prepared by the electrospinning method. Water-soluble Ag NPs were directly mixed into CA polymer fibers to form organic–inorganic composite ultrafine fibers. The optical property of Ag NPs was measured by ultraviolet-visble spectrometer (UV-vis). The presence and identification of crystalline of Ag NPs were confirmed by XRD analysis. Transmission electron microscopy (TEM) images showed that silver nanoparticles (Ag NPs) with an average diameter of 5–15 nm were obtained and were well distributed in the CA ultrafine fibers. The morphologies of the as-prepared electrospun Ag NPs/CA composite ultrafine fibers were characterized by scanning electron microscopy (SEM) and TEM. The composition of fibers was characterized by FTIR spectrometer.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2615
Author(s):  
Md. Amdadul Huq ◽  
Shahina Akter

In the present study, silver nanoparticles (AgNPs), biosynthesized using culture supernatant of bacterial strain Paenarthrobacter nicotinovorans MAHUQ-43, were characterized and their antimicrobial activity was investigated against both Gram-positive Bacillus cereus and Gram-negative bacteria Pseudomonas aeruginosa. Bacterial-mediated synthesized AgNPs were characterized by UV-Visible (UV-Vis) spectrophotometer, field emission-transmission electron microscopy (FE-TEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) analysis. The UV-Vis spectral analysis showed the absorption maxima at 466 nm which assured the synthesis of AgNPs. The FE-TEM analysis revealed the spherical shape of nanoparticles with the size range from 13 to 27 nm. The EDX and XRD analysis ensured the crystalline nature of biosynthesized AgNPs. The FTIR analysis revealed the involvement of different biomolecules for the synthesis of AgNPs as reducing and capping agents. The bacterial-mediated synthesized AgNPs inhibited the growth of pathogenic strains B. cereus and P. aeruginosa and developed a clear zone of inhibition (ZOI). The MIC and MBC for both pathogens were 12.5 µg/mL and 25 µg/mL, respectively. Moreover, field emission scanning electron microscopy analysis revealed that the synthesized AgNPs can destroy the outer membrane and alter the cell morphology of treated pathogens, leading to the death of cells. This study concludes the eco-friendly, facile and rapid synthesis of AgNPs using P. nicotinovorans MAHUQ-43 and synthesized AgNPs showed excellent antimicrobial activity against both Gram-positive and Gram-negative pathogens.


2018 ◽  
Vol 17 (2) ◽  
pp. 75-87
Author(s):  
Mustafa Nadhim OWAID ◽  
Ghassan Adnan NAEEM ◽  
Rasim Farraj MUSLIM ◽  
Raheel Saeed OLEIWI

The object of this study is to synthesize and characterize silver nanoparticles from Agaricus bisporus pileus extracts and their applications. Agaricus bisporus-mediated synthesis of AgNPs was characterized using changing the color solution, UV-Visible spectroscopy, SEM, AFM, SPM, FTIR spectrum, XRD, and EDS analyses. The change of the mixture color of 10-3 M AgNO3 with the watery extract of fresh A. bisporus caps from colorless to brown color is an indicator for the formation of silver nanoparticles (AgNPs). The UV-Visible spectrum exhibits the absorption peak at 418 nm. The FTIR spectra exhibited that the structures of amino acids, polysaccharides, and polyphenols in the crude extract of A. bisporus are not affected because of the joining and interaction of their functional groups with silver ions, and act as reducing and capping agents to the biosynthesized Ag nanoparticles. SEM and EDS refer to the formation of AgNPs with irregular or spherical shapes. The XRD pattern exhibits face-centered cubic (fcc) silver nanocrystals, with crystalline AgNPs size of 43.9 nm. The biosynthesized AgNPs play a suitable role against mouse cell line, which has receptors for polioviruses (L20B). After exposure of the colloid AgNPs to UV radiation (256 nm), the absorption band transferred from 418 nm to 435 nm, indicating that UV rays affect on physical properties of AgNPs. Roughness average of the biosynthesized AgNPs from A. bisporus caps is 15.4 nm, but the roughness is increased after UV irradiation for 1 h to average 33.6 nm. Histograms of particle size distribution of AgNPs show the average of AgNPs is 103.57 nm, while the size of nanoparticles reaches 69.47 nm after exposure to UV radiation of 256 nm. The use of UV radiation leads to enhanced characteristics of silver nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document