scholarly journals Systematic Identification of Thiosemicarbazides for Inhibition of Toxoplasma gondii Growth In Vitro

Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 614 ◽  
Author(s):  
Agata Paneth ◽  
Lidia Węglińska ◽  
Adrian Bekier ◽  
Edyta Stefaniszyn ◽  
Monika Wujec ◽  
...  

One of the key stages in the development of new therapies in the treatment of toxoplasmosis is the identification of new non-toxic small molecules with high specificity to Toxoplasma gondii. In the search for such structures, thiosemicarbazide-based compounds have emerged as a novel and promising leads. Here, a series of imidazole-thiosemicarbazides with suitable properties for CNS penetration was evaluated to determine the structural requirements needed for potent anti-Toxoplasma gondii activity. The best 4-arylthiosemicarbazides 3 and 4 showed much higher potency when compared to sulfadiazine at concentrations that are non-toxic to the host cells, indicating a high selectivity of their anti-toxoplasma activity.

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1053
Author(s):  
Lidia Węglińska ◽  
Adrian Bekier ◽  
Katarzyna Dzitko ◽  
Barbara Pacholczyk-Sienicka ◽  
Łukasz Albrecht ◽  
...  

Congenital and acquired toxoplasmosis caused by the food- and water-born parasite Toxoplasma gondii (T. gondii) is one of the most prevalent zoonotic infection of global importance. T. gondii is an obligate intracellular parasite with limited capacity for extracellular survival, thus a successful, efficient and robust host cell invasion process is crucial for its survival, proliferation and transmission. In this study, we screened a series of novel 1,3,4-thiadiazole-2-halophenylamines functionalized at the C5 position with the imidazole ring (1b–12b) for their effects on T. gondii host cell invasion and proliferation. To achieve this goal, these compounds were initially subjected to in vitro assays to assess their cytotoxicity on human fibroblasts and then antiparasitic efficacy. Results showed that all of them compare favorably to control drugs sulfadiazine and trimethoprim in terms of T. gondii growth inhibition (IC50) and selectivity toward the parasite, expressed as selectivity index (SI). Subsequently, the most potent of them with meta-fluoro 2b, meta-chloro 5b, meta-bromo 8b, meta-iodo 11b and para-iodo 12b substitution were tested for their efficacy in inhibition of tachyzoites invasion and subsequent proliferation by direct action on established intracellular infection. All the compounds significantly inhibited the parasite invasion and intracellular proliferation via direct action on both tachyzoites and parasitophorous vacuoles formation. The most effective was para-iodo derivative 12b that caused reduction in the percentage of infected host cells by 44% and number of tachyzoites per vacuole by 93% compared to non-treated host cells. Collectively, these studies indicate that 1,3,4-thiadiazoles 1b–12b, especially 12b with IC50 of 4.70 µg/mL and SI of 20.89, could be considered as early hit compounds for future design and synthesis of anti-Toxoplasma agents that effectively and selectively block the invasion and subsequent proliferation of T. gondii into host cells.


Author(s):  
Jie-Xi Li ◽  
Jun-Jun He ◽  
Hany M. Elsheikha ◽  
Jun Ma ◽  
Xiao-Pei Xu ◽  
...  

Toxoplasma gondii secretes a number of virulence-related effector proteins, such as the rhoptry protein 18 (ROP18). To further broaden our understanding of the molecular functions of ROP18, we examined the transcriptional response of human embryonic kidney cells (HEK293T) to ROP18 of type I T. gondii RH strain. Using RNA-sequencing, we compared the transcriptome of ROP18-expressing HEK293T cells to control HEK293T cells. Our analysis revealed that ROP18 altered the expression of 750 genes (467 upregulated genes and 283 downregulated genes) in HEK293T cells. Gene ontology (GO) and pathway enrichment analyses showed that differentially expressed genes (DEGs) were significantly enriched in extracellular matrix– and immune–related GO terms and pathways. KEGG pathway enrichment analysis revealed that DEGs were involved in several disease-related pathways, such as nervous system diseases and eye disease. ROP18 significantly increased the alternative splicing pattern “retained intron” and altered the expression of 144 transcription factors (TFs). These results provide new insight into how ROP18 may influence biological processes in the host cells via altering the expression of genes, TFs, and pathways. More in vitro and in vivo studies are required to substantiate these findings.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Haohan Zhuang ◽  
Chaoqun Yao ◽  
Xianfeng Zhao ◽  
Xueqiu Chen ◽  
Yimin Yang ◽  
...  

Abstract Background Toxoplasma gondii is an obligate parasite of all warm-blooded animals around the globe. Once infecting a cell, it manipulates the host’s DNA damage response that is yet to be elucidated. The objectives of the present study were three-fold: (i) to assess DNA damages in T. gondii-infected cells in vitro; (ii) to ascertain causes of DNA damage in T. gondii-infected cells; and (iii) to investigate activation of DNA damage responses during T. gondii infection. Methods HeLa, Vero and HEK293 cells were infected with T. gondii at a multiplicity of infection (MOI) of 10:1. Infected cells were analyzed for a biomarker of DNA double-strand breaks (DSBs) γH2AX at 10 h, 20 h or 30 h post-infection using both western blot and immunofluorescence assay. Reactive oxygen species (ROS) levels were measured using 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA), and ROS-induced DNA damage was inhibited by a ROS inhibitor N-acetylcysteine (NAC). Lastly, DNA damage responses were evaluated by detecting the active form of ataxia telangiectasia mutated/checkpoint kinase 2 (ATM/CHK2) by western blot. Results γH2AX levels in the infected HeLa cells were significantly increased over time during T. gondii infection compared to uninfected cells. NAC treatment greatly reduced ROS and concomitantly diminished γH2AX in host cells. The phosphorylated ATM/CHK2 were elevated in T. gondii-infected cells. Conclusions Toxoplasma gondii infection triggered DNA DSBs with ROS as a major player in host cells in vitro. It also activated DNA damage response pathway ATM/CHK2. Toxoplasma gondii manages to keep a balance between survival and apoptosis of its host cells for the benefit of its own survival.


1997 ◽  
Vol 41 (10) ◽  
pp. 2137-2140 ◽  
Author(s):  
F G Araujo ◽  
A A Khan ◽  
T L Slifer ◽  
A Bryskier ◽  
J S Remington

Ketolides are a new class of macrolide antibiotics that have been shown to be active against a variety of bacteria including macrolide-resistant bacteria and mycobacteria. We examined two ketolides, HMR 3647 and HMR 3004, for their in vitro and in vivo activities against the protozoan parasite Toxoplasma gondii. In vitro, both ketolides at concentrations as low as 0.05 microg/ml markedly inhibited replication of tachyzoites of the RH strain within human foreskin fibroblasts. HMR 3004 demonstrated some toxicity for host cells after they were exposed to 5 microg of the drug per ml for 72 h. In contrast, HMR 3647 did not show any significant toxicity even at concentrations as high as 25 microg/ml. In vivo, both ketolides provided remarkable protection against death in mice lethally infected intraperitoneally with tachyzoites of the RH strain or orally with tissue cysts of the C56 strain of T. gondii. A dosage of 100 mg of HMR 3647 per kg of body weight per day administered for 10 days protected 50% of mice infected with tachyzoites. The same dosage of HMR 3004 protected 100% of the mice. In mice infected with cysts, a dosage of 30 mg of HMR 3647 per kg per day protected 100% of the mice, whereas a dosage of 40 mg of HMR 3004 per kg per day protected 75% of the mice. These results demonstrate that HMR 3647 and HMR 3004 possess excellent activities against two different strains of T. gondii and may be useful for the treatment of toxoplasmosis in humans.


2014 ◽  
Vol 40 (3) ◽  
pp. 1001-1005 ◽  
Author(s):  
Fatemeh Rezaei ◽  
Mohammad Ali Ebrahimzadeh ◽  
Ahmad Daryani ◽  
Mehdi Sharif ◽  
Ehsan Ahmadpour ◽  
...  

2011 ◽  
Vol 22 (8) ◽  
pp. 1290-1299 ◽  
Author(s):  
Simren Mehta ◽  
L. David Sibley

Apicomplexan parasites rely on actin-based gliding motility to move across the substratum, cross biological barriers, and invade their host cells. Gliding motility depends on polymerization of parasite actin filaments, yet ∼98% of actin is nonfilamentous in resting parasites. Previous studies suggest that the lack of actin filaments in the parasite is due to inherent instability, leaving uncertain the role of actin-binding proteins in controlling dynamics. We have previously shown that the single allele of Toxoplasma gondii actin depolymerizing factor (TgADF) has strong actin monomer–sequestering and weak filament-severing activities in vitro. Here we used a conditional knockout strategy to investigate the role of TgADF in vivo. Suppression of TgADF led to accumulation of actin-rich filaments that were detected by immunofluorescence and electron microscopy. Parasites deficient in TgADF showed reduced speed of motility, increased aberrant patterns of motion, and inhibition of sustained helical gliding. Lack of TgADF also led to severe defects in entry and egress from host cells, thus blocking infection in vitro. These studies establish that the absence of stable actin structures in the parasite are not simply the result of intrinsic instability, but that TgADF is required for the rapid turnover of parasite actin filaments, gliding motility, and cell invasion.


2005 ◽  
Vol 73 (6) ◽  
pp. 3278-3286 ◽  
Author(s):  
Barbara A. Butcher ◽  
Robert I. Greene ◽  
Stanley C. Henry ◽  
Kimberly L. Annecharico ◽  
J. Brice Weinberg ◽  
...  

ABSTRACT The cytokine gamma interferon (IFN-γ) is critical for resistance to Toxoplasma gondii. IFN-γ strongly activates macrophages and nonphagocytic host cells to limit intracellular growth of T. gondii; however, the cellular factors that are required for this effect are largely unknown. We have shown previously that IGTP and LRG-47, members of the IFN-γ-regulated family of p47 GTPases, are required for resistance to acute T. gondii infections in vivo. In contrast, IRG-47, another member of this family, is not required. In the present work, we addressed whether these GTPases are required for IFN-γ-induced suppression of T. gondii growth in macrophages in vitro. Bone marrow macrophages that lacked IGTP or LRG-47 displayed greatly attenuated IFN-γ-induced inhibition of T. gondii growth, while macrophages that lacked IRG-47 displayed normal inhibition. Thus, the ability of the p47 GTPases to limit acute infection in vivo correlated with their ability to suppress intracellular growth in macrophages in vitro. Using confocal microscopy and sucrose density fractionation, we demonstrated that IGTP largely colocalizes with endoplasmic reticulum markers, while LRG-47 was mainly restricted to the Golgi. Although both IGTP and LRG-47 localized to vacuoles containing latex beads, neither protein localized to vacuoles containing live T. gondii. These results suggest that IGTP and LRG-47 are able to regulate host resistance to acute T. gondii infections through their ability to inhibit parasite growth within the macrophage.


2021 ◽  
Vol 23 (1) ◽  
pp. 68
Author(s):  
Izra Abbaali ◽  
Danny A. Truong ◽  
Shania D. Day ◽  
Nancy Haro-Ramirez ◽  
Naomi S. Morrissette

Apicomplexan parasites, such as Toxoplasma gondii, Plasmodium spp., Babesia spp., and Cryptosporidium spp., cause significant morbidity and mortality. Existing treatments are problematic due to toxicity and the emergence of drug-resistant parasites. Because protozoan tubulin can be selectively disrupted by small molecules to inhibit parasite growth, we assembled an in vitro testing cascade to fully delineate effects of candidate tubulin-targeting drugs on Toxoplasma gondii and vertebrate host cells. Using this analysis, we evaluated clemastine, an antihistamine that has been previously shown to inhibit Plasmodium growth by competitively binding to the CCT/TRiC tubulin chaperone as a proof-of-concept. We concurrently analyzed astemizole, a distinct antihistamine that blocks heme detoxification in Plasmodium. Both drugs have EC50 values of ~2 µM and do not demonstrate cytotoxicity or vertebrate microtubule disruption at this concentration. Parasite subpellicular microtubules are shortened by treatment with either clemastine or astemizole but not after treatment with pyrimethamine, indicating that this effect is not a general response to antiparasitic drugs. Immunoblot quantification indicates that the total α-tubulin concentration of 0.02 pg/tachyzoite does not change with clemastine treatment. In conclusion, the testing cascade allows profiling of small-molecule effects on both parasite and vertebrate cell viability and microtubule integrity.


2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Afonso P. Basto ◽  
Joachim Müller ◽  
Riccardo Rubbiani ◽  
David Stibal ◽  
Federico Giannini ◽  
...  

ABSTRACT The in vitro effects of 18 dinuclear thiolato-bridged arene ruthenium complexes (1 monohiolato compound, 4 dithiolato compounds, and 13 trithiolato compounds), originally designed as anticancer agents, on the apicomplexan parasite Toxoplasma gondii grown in human foreskin fibroblast (HFF) host cells were studied. Some trithiolato compounds exhibited antiparasitic efficacy at concentrations of 250 nM and below. Among those, complex 1 and complex 2 inhibited T. gondii proliferation with 50% inhibitory concentrations (IC50s) of 34 and 62 nM, respectively, and they did not affect HFFs at dosages of 200 μM or above, resulting in selectivity indices of >23,000. The IC50s of complex 9 were 1.2 nM for T. gondii and above 5 μM for HFFs. Transmission electron microscopy detected ultrastructural alterations in the matrix of the parasite mitochondria at the early stages of treatment, followed by a more pronounced destruction of tachyzoites. However, none of the three compounds applied at 250 nM for 15 days was parasiticidal. By affinity chromatography using complex 9 coupled to epoxy-activated Sepharose followed by mass spectrometry, T. gondii translation elongation factor 1α and two ribosomal proteins, RPS18 and RPL27, were identified to be potential binding proteins. In conclusion, organometallic ruthenium complexes exhibit promising activities against Toxoplasma, and the potential mechanisms of action of these compounds as well as their prospective applications for the treatment of toxoplasmosis are discussed.


2008 ◽  
Vol 7 (4) ◽  
pp. 664-674 ◽  
Author(s):  
Fabien Brossier ◽  
G. Lucas Starnes ◽  
Wandy L. Beatty ◽  
L. David Sibley

ABSTRACT Rhomboids are serine proteases that cleave their substrates within the transmembrane domain. Toxoplasma gondii contains six rhomboids that are expressed in different life cycle stages and localized to different cellular compartments. Toxoplasma rhomboid protein 1 (TgROM1) has previously been shown to be active in vitro, and the orthologue in Plasmodium falciparum processes the essential microneme protein AMA1 in a heterologous system. We investigated the role of TgROM1 to determine its role during in vitro growth of T. gondii. TgROM1 was localized in the secretory pathway of the parasite, including the Golgi apparatus and micronemes, which contain adhesive proteins involved in invasion of host cells. However, unlike other micronemal proteins, TgROM1 was not released onto the parasite surface during cell invasion, suggesting it does not play a critical role in cell invasion. Suppression of TgROM1 using the tetracycline-regulatable system revealed that ROM1-deficient parasites were outcompeted by wild-type T. gondii. ROM1-deficient parasites showed only modest decrease in invasion but replicated more slowly than wild-type cells. Collectively, these results indicate that ROM1 is required for efficient intracellular growth by T. gondii.


Sign in / Sign up

Export Citation Format

Share Document