scholarly journals Molecular Interactions of Antibody Drugs Targeting PD-1, PD-L1, and CTLA-4 in Immuno-Oncology

Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1190 ◽  
Author(s):  
Hyun Lee ◽  
Sang Lee ◽  
Yong-Seok Heo

Cancer cells can evade immune surveillance through the molecular interactions of immune checkpoint proteins, including programmed death 1 (PD-1), PD-L1, and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). Since 2011, the FDA-approved antibody drugs ipilimumab (Yervoy®), nivolumab (Opdivo®), pembrolizumab (Keytruda®), cemiplimab (Libtayo®), atezolizumab (Tecentriq®), durvalumab (Imfinzi®), and avelumab (Bavencio®), which block the immune checkpoint proteins, have brought about a significant breakthrough in the treatment of a wide range of cancers, as they can induce durable therapeutic responses. In recent years, crystal structures of the antibodies against PD-1, PD-L1, and CTLA-4 have been reported. In this review, we describe the latest structural studies of these monoclonal antibodies and their interactions with the immune checkpoint proteins. A comprehensive analysis of the interactions of these immune checkpoint blockers can provide a better understanding of their therapeutic mechanisms of action. The accumulation of these structural studies would provide a basis that is essential for the rational design of next-generation therapies in immuno-oncology.

Author(s):  
Jeffrey S. Weber

Overview: Monoclonal antibodies directed against immune checkpoint proteins, such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) or programmed death-1 (PD-1), can boost endogenous immune responses directed against tumor cells. Recently, ipilimumab was approved by the U.S. Food and Drug Administration (FDA) for the treatment of metastatic melanoma, and the anti-PD-1 antibody BMS-936558 has shown promising results in patients with melanoma, non-small cell lung cancer, and renal cell cancer. During treatment with these antibodies, a unique set of toxicities occur called immune-related adverse events (irAEs). These irAEs may occur at any time during treatment and include colitis characterized by a mild to moderate but occasionally severe and persistent diarrhea. Hypophysitis, hepatitis, pancreatitis, iridocyclitis, lymphadenopathy, neuropathies, and nephritis have also been reported with ipilimumab, and a subset of those side effects has also been observed with BMS-936558. Patient and physician education as well as good patient–caretaker communication are keys to limiting the morbidity of irAEs. Early recognition of these irAEs and initiation of treatment are critical to reduce the risk of complications, since virtually all irAEs are reversible with the use of steroids and other immune suppressants. The onset of grade 3 to 4 irAEs correlated with treatment response in some ipilimumab studies. This article provides detailed description and recommendations for practicing oncologists to manage the common irAEs associated with antibodies against immune checkpoint blockade.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Cheng Xing ◽  
Heng Li ◽  
Rui-Juan Li ◽  
Le Yin ◽  
Hui-Fang Zhang ◽  
...  

AbstractTargeting immune checkpoints has achieved great therapeutic effects in the treatment of early-stage tumors. However, most patients develop adaptive resistance to this therapy. The latest evidence demonstrates that tumor-derived exosomes may play a key role in systemic immune suppression and tumor progression. In this article, we highlight the role of exosomal immune checkpoint proteins in tumor immunity, with an emphasis on programmed death ligand 1 (PD-L1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), as well as emerging evidence on roles of T cell immunoglobulin-3 (TIM-3), arginase 1 (ARG1), and estrogen receptor binding fragment-associated antigen 9 (EBAG9) expressed by exosomes.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A223-A223
Author(s):  
Jennifer Whang ◽  
Andrea Fan ◽  
Christopher Kirk ◽  
Eric Lowe ◽  
Dustin McMinn ◽  
...  

BackgroundMany tumor cells escape immune cell clearance by overexpressing CD47, a multi-pass transmembrane protein, which binds signal regulatory protein α (SIRPα) on macrophages leading to decreased phagocytic activity. Blockade of CD47/SIRPα interactions enhances macrophage phagocytosis and is being targeted with antibody-based drugs, some of which are used in combination therapies in clinical trials. A novel method to target CD47 is through the inhibition of cotranslational translocation of transmembrane proteins. Immediately after exiting the ribosome, signal sequences that are unique to each protein are directed through the Sec61 channel into the ER for extracellular expression.1 Several Sec61-targeting compounds have been identified to suppress translocation in a signal sequence-specific manner.2 We previously described Sec61 inhibitors capable of selectively targeting immune checkpoint proteins and enhancing T cell function.3 Here, we demonstrate the blockade of CD47 expression on tumor cells and enhancement of macrophage phagocytosis with small molecule inhibitors of Sec61.MethodsSec61-dependent expression of target proteins was assayed using HEK293 cells overexpressing constructs comprised of signal sequences fused to a luciferase reporter. Stimulated PBMCs or tumor cells were incubated with Sec61 inhibitors, and surface expression of checkpoint molecules were examined by flow cytometry. Necrotic and apoptotic cells were assessed by Annexin V and 7AAD labeling. Human CD14+ monocytes were differentiated to M1- or M2-type macrophages. Jurkat or SKBR3 cells were incubated with Sec61 inhibitors, labeled with a pH sensitive dye and co-cultured with macrophages to assess phagocytosis.ResultsWe identified Sec61 inhibitors that block select immune checkpoint proteins. Compounds demonstrated either selective or multi-target profiles in transient transfection screens, which was supported by decreased protein expression on activated T cells. KZR-9275 targeted multiple checkpoint molecules, including PD-1, LAG-3 and CD73, along with a potent inhibition of the CD47 signal sequence reporter. CD47 surface expression was decreased on Jurkat and SKBR3 cells following 72 hours of compound treatment. KZR-9275 treatment of SKBR3 cells induced a minor increase in apoptotic cells, which was not detected in Jurkat cells. Increased macrophage phagocytosis, especially with M2-type macrophages, was observed when Jurkat or SKBR3 cells were pre-treated with KZR-9275.ConclusionsOur findings demonstrate that Sec61 inhibitors can block the expression of CD47, a phagocytosis checkpoint protein, on tumor cells and subsequently modulate macrophage phagocytic activity. Small molecule inhibitors of Sec61 provide an opportunity to target multiple checkpoint proteins on various cell populations. Future in vivo tumor models will assess the efficacy of Sec61 inhibitors to provide combination-like therapy.ReferencesPark E, Rapoport TA. Mechanisms of Sec61/SecY-mediated protein translocation across membranes. Annu Rev Biophys 2012; 41:1–20.Van Puyenbroeck V, Vermeire K. Inhibitors of protein translocation across membranes of the secretory pathway: novel antimicrobial and anticancer agents. Cell Mol Life Sci 2018; 75:1541–1558.Whang J, Anderl J, Fan A, Kirk C, Lowe E, McMinn D, et al. Targeting multiple immune checkpoint proteins with novel small molecule inhibitors of Sec61-dependent cotranslational translocation. 34th Annual Meeting & Pre-Conference Programs of the Society for Immunotherapy of Cancer (SITC 2019): part 2. J Immunother Cancer 2019; 7: 283. Abstract 815.


Neurosurgery ◽  
2020 ◽  
Vol 87 (3) ◽  
pp. E281-E288
Author(s):  
Elisa Aquilanti ◽  
Priscilla K Brastianos

Abstract Immune checkpoint inhibitors enhance immune recognition of tumors by interfering with the cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) and programmed death 1 (PD1) pathways. In the past decade, these agents brought significant improvements to the prognostic outlook of patients with metastatic cancers. Recent data from retrospective analyses and a few prospective studies suggest that checkpoint inhibitors have activity against brain metastases from melanoma and nonsmall cell lung cancer, as single agents or in combination with radiotherapy. Some studies reported intracranial response rates that were comparable with systemic ones. In this review, we provide a comprehensive summary of clinical data supporting the use of anti-CTLA4 and anti-PD1 agents in brain metastases. We also touch upon specific considerations on the assessment of intracranial responses in patients and immunotherapy-specific toxicities. We conclude that a subset of patients with brain metastases benefit from the addition of checkpoint inhibitors to standard of care therapeutic modalities, including radiotherapy and surgery.


2016 ◽  
Vol 18 (suppl 3) ◽  
pp. iii143.4-iii143
Author(s):  
Eric Ring ◽  
Blake Moore ◽  
Li Nan ◽  
Tina Etminan ◽  
James Markert ◽  
...  

2019 ◽  
Vol 12 (10) ◽  
pp. e231211 ◽  
Author(s):  
Lexis Gordon ◽  
Pouneh Dokouhaki ◽  
Kimberly Hagel ◽  
Bhanu Prasad

Immune checkpoint inhibitors are novel oncological medications, current classes of which include monoclonal antibodies that target inhibitory receptors cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), programmed death 1 protein (PD-1) and programmed death-ligand 1. While they are novel in their ability to treat cancer, they also have a unique spectrum of immune-related adverse events. Renal-related immune adverse events, though rare, are an increasingly recognised clinical entity. We present the case of a 67-year-old man with acute kidney injury (AKI) after the second cycle of combination anti-CTLA-4 and anti-PD-1 antibodies for metastatic cutaneous melanoma. He presented with vomiting and diarrhoea, and AKI secondary to dehydration was treated with aggressive rehydration. After failing to recover biochemically, a renal biopsy was performed, which demonstrated severe acute interstitial nephritis. The culprit medications were held and he was treated with steroids. With immunosuppression, creatinine improved to pretreatment values.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Hina Khan ◽  
Rasim Gucalp ◽  
Iuliana Shapira

Cancer is associated with global immune suppression of the host. Malignancy-induced immune suppressive effect can be circumvented by blocking the immune checkpoint and tip the immune balance in favor of immune stimulation and unleash cytotoxic effects on cancer cells. Human antibodies directed against immune checkpoint proteins: cytotoxic T lymphocytes antigen-4 (CTLA-4) and programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1), have shown therapeutic efficacy in advanced melanoma and non-small-cell lung cancer and other malignancies. Immune check point blockade antibodies lead to diminished tolerance to self and enhanced immune ability to recognize and eliminate cancer cells. As a class these agents have immune-related adverse events due to decreased ability of effector immune cells to discriminate between self and non-self. Seventy percent of patients participating in clinical trials have experienced anticancer activities and varying degrees of immune mediated dose-limiting side effects.


2017 ◽  
Vol 77 (6) ◽  
pp. 1245-1249 ◽  
Author(s):  
Sangbin Lim ◽  
Joshua B. Phillips ◽  
Luciana Madeira da Silva ◽  
Ming Zhou ◽  
Oystein Fodstad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document