scholarly journals Bio-Polyethylene-Based Composites Reinforced with Alkali and Palmitoyl Chloride-Treated Coffee Silverskin

Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3113 ◽  
Author(s):  
Franco Dominici ◽  
Daniel García García ◽  
Vicent Fombuena ◽  
Francesca Luzi ◽  
Debora Puglia ◽  
...  

This work investigates the feasibility of using coffee silverskin (CSS) as a reinforcing agent in biobased polyethylene (BioPE) composites, by adding it in bulk and thin film samples. The effect of two different treatments, alkali bleaching (CSS_A) and esterification with palmitoyl chloride (CSS_P), on mechanical, thermal, morphological and water absorption behavior of produced materials at different CSS loading (10, 20 and 30 wt %) was investigated. A reactive graft copolymerization of BioPE with maleic anhydride was considered in the case of alkali treated CSS. It was found that, when introduced in bulk samples, improvement in the elastic modulus and a reduction in strain at maximum stress were observed with the increase in CSS fraction for the untreated and treated CSS composites, while the low aspect ratio of the CSS particles and their poor adhesion with the polymeric matrix were responsible for reduced ductility in films, decreasing crystallinity values and reduction of elastic moduli. When CSS_A and CSS_P are introduced in the matrix, a substantial reduction in the water uptake is also obtained in films, mainly due to presence of maleated PE, that builds up some interactions to eliminate the amounts of OH groups and hydrophobized CSS, due to the weakened absorption capacity of the functionalized CSS.

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2509
Author(s):  
Seyed Mohammad Javad Razavi ◽  
Rasoul Esmaeely Neisiany ◽  
Moe Razavi ◽  
Afsaneh Fakhar ◽  
Vigneshwaran Shanmugam ◽  
...  

Functionalized polyacrylonitrile (PAN) nanofibers were used in the present investigation to enhance the fracture behavior of carbon epoxy composite in order to prevent delamination if any crack propagates in the resin rich area. The main intent of this investigation was to analyze the efficiency of PAN nanofiber as a reinforcing agent for the carbon fiber-based epoxy structural composite. The composites were fabricated with stacked unidirectional carbon fibers and the PAN powder was functionalized with glycidyl methacrylate (GMA) and then used as reinforcement. The fabricated composites’ fracture behavior was analyzed through a double cantilever beam test and the energy release rate of the composites was investigated. The neat PAN and functionalized PAN-reinforced samples had an 18% and a 50% increase in fracture energy, respectively, compared to the control composite. In addition, the samples reinforced with functionalized PAN nanofibers had 27% higher interlaminar strength compared to neat PAN-reinforced composite, implying more efficient stress transformation as well as stress distribution from the matrix phase (resin-rich area) to the reinforcement phase (carbon/phase) of the composites. The enhancement of fracture toughness provides an opportunity to alleviate the prevalent issues in laminated composites for structural operations and facilitate their adoption in industries for critical applications.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 338
Author(s):  
Ali Alrahlah ◽  
Abdel-Basit Al-Odayni ◽  
Haifa Fahad Al-Mutairi ◽  
Bashaer Mousa Almousa ◽  
Faisal S. Alsubaie ◽  
...  

This study aimed to synthesize new bisphenol A-glycidyl methacrylate (BisGMA) derivatives, targeting a reduction in its viscosity by substituting one of its OH groups, the leading cause of its high viscosity, with a chlorine atom. Hence, this monochloro-BisGMA (mCl-BisGMA) monomer was synthesized by Appel reaction procedure, and its structure was confirmed using Fourier transform infrared spectroscopy, 1H and 13C-nuclear magnetic resonance spectroscopy, and mass spectroscopy. The viscosity of mCl-BisGMA (8.3 Pa·s) was measured under rheometry conditions, and it was found to be more than 65-fold lower than that of BisGMA (566.1 Pa·s) at 25 °C. For the assessment of the viscosity changes of model resins in the presence of mCl-BisGMA, a series of resin matrices, in which, besides BisGMA, 50 wt % was triethylene glycol dimethacrylate, were prepared and evaluated at 20, 25, and 35 °C. Thus, BisGMA was incrementally replaced by 25% mCl-BisGMA to obtain TBC0, TBC25, TBC50, TBC75, and TBC100 blends. The viscosity decreased with temperature, and the mCl-BisGMA content in the resin mixture increased. The substantial reduction in the viscosity value of mCl-BisGMA compared with that of BisGMA may imply its potential use as a dental resin matrix, either alone or in combination with traditional monomers. However, the various properties of mCl-BisGMA-containing matrices should be evaluated.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2431
Author(s):  
Wen Zhang ◽  
Juanjuan Wang ◽  
Xue Han ◽  
Lele Li ◽  
Enping Liu ◽  
...  

In this paper, effective separation of oil from both immiscible oil–water mixtures and oil-in-water (O/W) emulsions are achieved by using poly(dimethylsiloxane)-based (PDMS-based) composite sponges. A modified hard template method using citric acid monohydrate as the hard template and dissolving it in ethanol is proposed to prepare PDMS sponge composited with carbon nanotubes (CNTs) both in the matrix and the surface. The introduction of CNTs endows the composite sponge with enhanced comprehensive properties including hydrophobicity, absorption capacity, and mechanical strength than the pure PDMS. We demonstrate the successful application of CNT-PDMS composite in efficient removal of oil from immiscible oil–water mixtures within not only a bath absorption, but also continuous separation for both static and turbulent flow conditions. This notable characteristic of the CNT-PDMS sponge enables it as a potential candidate for large-scale industrial oil–water separation. Furthermore, a polydopamine (PDA) modified CNT-PDMS is developed here, which firstly realizes the separation of O/W emulsion without continuous squeezing of the sponge. The combined superhydrophilic and superoleophilic property of PDA/CNT-PDMS is assumed to be critical in the spontaneously demulsification process.


1988 ◽  
Vol 130 ◽  
Author(s):  
D. S. Stone ◽  
T. W. Wu ◽  
P.-S. Alexopoulos ◽  
W. R. Lafontaine

AbstractClosed-form elasticity solutions are introduced, that predict the average displacement beneath square and triangular, uniformly loaded areas at the surface of a bilayer. The solutions aid in the application of depth-sensing indentation techniques for measuring thin film elastic moduli. The elasticity solutions agree closely with experimental data of Al, Si, 1 μm Al on Si, and 2 μm Cr on Si. The case of poor adhesion between the film and substrate is briefly examined.


2011 ◽  
Vol 239-242 ◽  
pp. 3231-3235
Author(s):  
Xiao Yu Zheng ◽  
Jin Cheng Wang ◽  
Ke Yang

In this paper, hyperbranched organic montmorillonite (H-OMMT) with hydroxyl (-OH) groups was prepared. The organic montmorillonite (OMMT) was used as a reinforcing agent in NR matrix. The H-OMMT modified natural rubber (NR) had good mechanical properties with the addition of the H-OMMT. Properties, such as tensile strength and abrasion loss, were researched and compared. Results showed that NR/H-OMMT-5% composite had the best tensile and were resistant properties.


Author(s):  
R. Panneer

Fibers embedded in the matrix of another material are the best example of modern day composite materials. Hybrid Composites made out of an amalgamation of Natural Fibers such as banana, jute, and coir along with glass fiber embedded in polymers have potential applications in automotive, aircraft and marine industries for their unique characteristics like high specific strength, light weight, design flexibility, corrosion resistance, biodegradability and low cost. In this work, epoxy hybrid composites reinforced with glass fiber mats and banana, jute, coir fibers of random lengths between 10-25 mm are prepared by varying their compositions in terms of weight percentage. The composites are fabricated by hand lay-up process and cut into test specimens as per ASTM Standards. Their mechanical characteristics such as Tensile Strength, Flexural Strength, Impact Strength, Hardness, Density and Water Absorption Capacity are evaluated and analysed.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 842 ◽  
Author(s):  
Weiwei Zhang ◽  
Jin Gu ◽  
Dengyun Tu ◽  
Litao Guan ◽  
Chuanshuang Hu

Paper fibers have gained broad attention in natural fiber reinforced composites in recent years. The specific problem in preparing paper fiber reinforced composites is that paper fibers easily become flocculent after pulverization, which increases difficulties during melt-compounding with polymer matrix and results in non-uniform dispersion of paper fibers in the matrix. In this study, old newspaper (ONP) was treated with a low dosage of gaseous methyltrichlorosilane (MTCS) to solve the flocculation. The modified ONP fibers were characterized by Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and Thermogravimetric Analysis (TG). Then the modified ONP fibers and high-density polyethylene (HDPE) were extruded and pelletized to prepare ONP/HDPE composites via injection molding. Maleic anhydride-grafted polyethylene (MAPE) was added to enhance the interfacial bonding performance with the ultimate purpose of improving the mechanical strength of the composites. The mechanical properties such as tensile, flexural, and impact strength and the water absorption properties of the composite were tested. The results showed that the formation of hydrogen bonding between ONP fibers was effectively prevented after MTCS treatment due to the reduction of exposed –OH groups at the fiber surface. Excessive dosage of MTCS led to severe fiber degradation and dramatically reduced the aspect ratio of ONP fibers. Composites prepared with ONP fibers modified with 4% (v/w) MTCS showed the best mechanical properties due to reduced polarity between the fibers and the matrix, and the relatively long aspect ratio of treated ONP fibers. The composite with or without MAPE showed satisfactory water resistance properties. MTCS was proven to be a cheap and efficient way to pretreat old newspaper for preparing paper fiber reinforced composites.


Author(s):  
Linbing Wang ◽  
Emir Macari ◽  
Eyassu Woldesenbet

The elastic moduli of granular assemblies are sensitive to the confining conditions as well as the volume fractions of each of its constituents (i.e. solid, fluid, gas). Theoretical estimations using granular mechanics are based on assumed distributions of contact normals and branch vectors using idealized particle shapes and therefore cannot quantitatively predict the moduli. This paper presents a new method to use the moduli of the granular skeleton and those of the matrix to estimate the moduli of the composite and makes it possible to back-calculate the moduli of the skeleton from the moduli of the composite and the matrix.


Author(s):  
Mahshid Mahbod ◽  
Masoud Asgari ◽  
Christian Mittelstedt

In this paper, the elastic–plastic mechanical properties of regular and functionally graded additively manufactured porous structures made by a double pyramid dodecahedron unit cell are investigated. The elastic moduli and also energy absorption are evaluated via finite element analysis. Experimental compression tests are performed which demonstrated the accuracy of numerical simulations. Next, single and multi-objective optimizations are performed in order to propose optimized structural designs. Surrogated models are developed for both elastic and plastic mechanical properties. The results show that elastic moduli and the plastic behavior of the lattice structures are considerably affected by the cell geometry and relative density of layers. Consequently, the optimization leads to a significantly better performance of both regular and functionally graded porous structures. The optimization of regular lattice structures leads to great improvement in both elastic and plastic properties. Specific energy absorption, maximum stress, and the elastic moduli in x- and y-directions are improved by 24%, 79%, 56%, and 9%, respectively, compared to the base model. In addition, in the functionally graded optimized models, specific energy absorption and normalized maximum stress are improved by 64% and 56%, respectively, in comparison with the base models.


1994 ◽  
Vol 61 (4) ◽  
pp. 803-808 ◽  
Author(s):  
Z. M. Xiao ◽  
K. D. Pae

The problem of two penny-shaped crazes formed at the top and the bottom poles of a spherical inhomogeneity has been investigated. The inhomogeneity is embedded in an infinitely extended elastic body which is under uniaxial tension. Both the inhomogeneity and the matrix are isotropic but have different elastic moduli. The analysis is based on the superposition principle of the elasticity theory and Eshelby’s equivalent inclusion method. The stress field inside the inhomogeneity and the stress intensity factor on the boundary of the craze are evaluated in the form of a series which involves the ratio of the radius of the penny-shaped craze to the radius of the spherical inhomogeneity. Numerical examples show the interaction between the craze and the inhomogeneity is strongly affected by the elastic properties of the inhomogeneity and the matrix. The conclusion deduced from the numerical results is in good agreement with experimental results given in the literature.


Sign in / Sign up

Export Citation Format

Share Document