Research on Mechanical Properties of Modified Organic Montmorillonite Reinforced Nature Rubber(NR) Composites

2011 ◽  
Vol 239-242 ◽  
pp. 3231-3235
Author(s):  
Xiao Yu Zheng ◽  
Jin Cheng Wang ◽  
Ke Yang

In this paper, hyperbranched organic montmorillonite (H-OMMT) with hydroxyl (-OH) groups was prepared. The organic montmorillonite (OMMT) was used as a reinforcing agent in NR matrix. The H-OMMT modified natural rubber (NR) had good mechanical properties with the addition of the H-OMMT. Properties, such as tensile strength and abrasion loss, were researched and compared. Results showed that NR/H-OMMT-5% composite had the best tensile and were resistant properties.

2012 ◽  
Vol 85 (1) ◽  
pp. 120-131 ◽  
Author(s):  
Md. Najib Alam ◽  
Swapan Kumar Mandal ◽  
Subhas Chandra Debnath

Abstract Several zinc dithiocarbamates (ZDCs) as accelerator derived from safe amine has been exclusively studied in the presence of thiazole-based accelerators to introduce safe dithiocarbamate in the vulcanization of natural rubber. Comparison has been made between conventional unsafe zinc dimethyldithiocarbamate (ZDMC) with safe novel ZDC combined with thizole-based accelerators in the light of mechanical properties. The study reveals that thiuram disulfide and 2-mercaptobenzothiazole (MBT) are always formed from the reaction either between ZDC and dibenzothiazyledisulfide (MBTS) or between ZDC and N-cyclohexyl-2-benzothiazole sulfenamide (CBS). It has been conclusively proved that MBT generated from MBTS or CBS reacts with ZDC and produces tetramethylthiuram disulfide. The observed synergistic activity has been discussed based on the cure and physical data and explained through the results based on high-performance liquid chromatography and a reaction mechanism. Synergistic activity is observed in all binary systems studied. The highest tensile strength is observed in the zinc (N-benzyl piperazino) dithiocarbamate-accelerated system at 3:6 mM ratios. In respect of tensile strength and modulus value, unsafe ZDMC can be successfully replaced by safe ZDCs in combination with thiazole group containing accelerator.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chatree Homkhiew ◽  
Surasit Rawangwong ◽  
Worapong Boonchouytan ◽  
Wiriya Thongruang ◽  
Thanate Ratanawilai

The aim of this work is to investigate the effects of rubberwood sawdust (RWS) size and content as well as the ratio of natural rubber (NR)/high-density polyethylene (HDPE) blend on properties of RWS reinforced thermoplastic natural rubber (TPNR) composites. The addition of RWS about 30–50 wt% improved the modulus of the rupture and tensile strength of TPNR composites blending with NR/HDPE ratios of 60/40 and 50/50. TPNR composites reinforced with RWS 80 mesh yielded better tensile strength and modulus of rupture than the composites with RWS 40 mesh. The TPNR/RWS composites with larger HDPE content gave higher tensile, flexural, and Shore hardness properties and thermal stability as well as lower water absorption. The TPNR/RWS composites with larger plastic content were therefore suggested for applications requiring high performance of thermal, physical, and mechanical properties.


2005 ◽  
Vol 21 (3) ◽  
pp. 183-199
Author(s):  
G.K. Jana ◽  
C.K. Das

De-vulcanization of vulcanized elastomers represents a great challenge because of their three-dimensional network structure. Sulfur-cured gum natural rubbers containing three different sulfur/accelerator ratios were de-vulcanized by thio-acids. The process was carried out at 90 °C for 10 minutes in an open two-roll cracker-cum-mixing mill. Two concentrations of de-vulcanizing agent were tried in order to study the cleavage of the sulfidic bonds. The mechanical properties of the re-vulcanized rubber (like tensile strength, modulus, tear strength and elongation at break) were improved with increasing concentrations of de-vulcanizing agent, because the crosslink density increased. A decrease in scorch time and in optimum cure time and an increase in the state of cure were observed when vulcanized rubber was treated with high amounts of de-vulcanizing agent. The temperature of onset of degradation was also increased with increasing concentration of thio-acid. DMA analysis revealed that the storage modulus increased on re-vulcanization. From IR spectroscopy it was observed that oxidation of the main polymeric chains did not occur at the time of high temperature milling. Over 80% retention of the original mechanical properties (like tensile strength, modulus, tear strength and elongation at break) of the vulcanized natural rubber was achieved by this mechanochemical process.


2017 ◽  
Vol 735 ◽  
pp. 153-157
Author(s):  
Wasinee Pinpat ◽  
Wirunya Keawwattana ◽  
Siree Tangbunsuk

Silica has been used as reinforcing filler in natural rubber for a period of time as it results in excellent properties for NR vulcanizes. Rice husk ash (RHA), bagasse ash (BA), and oil palm ash (OPA) obtained from agricultural wastes are mainly composed of silica in the percentage of 80.00%, 57.33%, and 40.20% by weight, respectively. The effect of these fillers on cure characteristics and mechanical properties of natural rubber materials at fixed silica content at 35 parts per hundred of rubber (phr) were investigated. The results indicated that ashes showed greater cure time compared to that of the silica. The incorporation of ashes into natural rubber gradually improved compression set but significantly decreased tensile strength, elongation at break, and resilience. Moreover, young's modulus increased, while hardness showed no significant change with the addition of ashes. Overall results indicated that ashes could be used as cheaper fillers for natural rubber materials where improved mechanical properties were not critical.


2020 ◽  
Vol 990 ◽  
pp. 262-266
Author(s):  
Prathumrat Nu-Yang ◽  
Atiwat Wiriya-Amornchai ◽  
Jaehoon Yoon ◽  
Chainat Saechau ◽  
Poom Rattanamusik

Thermoplastic vulcanizates or TPVs is a type of materials exhibiting excellent properties between thermoplastic and elastomer by combining the characteristics of vulcanized rubber with the processing properties of thermoplastics. This research aims to study the effect of thermal aging on the morphology and mechanical properties of thermoplastic vulcanizates (TPVs) based on a mixture of natural rubber (NR) and polystyrene (PS). TPVs samples were prepared using the internal mixer at a mass ratio of NR/PS 70/30, 50/50, 30/70 and 0/100. Tensile properties and impact strength showed that when the amount of NR increased tends of impact strength and elongation at break increased but tends of tensile strength decreased. On the other hand, tends of tensile strength for thermal aging at 70°C for 3 days increased when the amount of PS increase. The blending ratio of NR / PS at 70/30 is the best. It gave a worthy increase from 19.94 MPa to be 25.56 MPa (28.18%).


2017 ◽  
Vol 744 ◽  
pp. 282-287
Author(s):  
Sarawut Prasertsri ◽  
Sansanee Srichan

This research aimed to develop the formulation of natural rubber filled with carbon black, silica and calcium carbonate for rubber calf nipple application. The reverse engineering was performed on the calf nipple product to analyze the rubber type and component by using Soxhlet extraction, thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) techniques. Furthermore, mechanical properties were examined to act as benchmark for the rubber compound design. The results showed that rubber component in the nipple product was natural rubber, whereas two filler types revealed as carbon black and calcium carbonate with 10 and 35 of the total weight. In addition, rubber nipple showed the hardness of 46±1 Shore A and tensile strength of 5.3±0.60 MPa. From the investigation of the properties of developed rubber compounds in this work, it was found that the mechanical properties depended on type and content of filler. The required mechanical properties of vulcanizates were achieved at 20 phr of carbon black (N330), 20 phr of silica and 120 phr of calcium carbonate.


2018 ◽  
Vol 772 ◽  
pp. 13-17 ◽  
Author(s):  
Wapoon Tappanawatch ◽  
Paweena Prapainainar ◽  
Pongdhorn Sae-Oui ◽  
Surapich Loykulnant ◽  
Peerapan Dittanet

Cellulose nanocrystals (CNC) were extracted from corn cob and synthesized by alkaline treatment using 3 wt% sodium hydroxide (NaOH). Acid hydrolysis with 64 wt% sulfuric acid (H2SO4) at different reaction times (30, 45, 60 min) was performed to obtain CNC solutions. CNC was evaluated as a reinforcing agent in natural rubber (NR) at CNC loadings from 1-5 wt%. Gamma-ray radiation was used as vulcanization method and varied at 10 and 20 kGy. The tensile modulus and tensile strength of NR vulcanizates increased with addition of CNC and contents. In addition, radiation by gamma ray impacts the mechanical performance, where CNC/NR composites vulcanized with higher dose of radiation of 20 KGy were found to have the higher values in tensile strength, elongation at break, and modulus than with 10 KGy. Moreover, the tensile strength and elongation at break of the composites after aging were found to slightly increase due to post-curing during the aging process.


2013 ◽  
Vol 773 ◽  
pp. 668-672
Author(s):  
Jun Liang Liu ◽  
Ping Liu ◽  
Xiao Qiang Tang ◽  
Dong Zeng ◽  
Xing Kai Zhang ◽  
...  

In this paper, the blends of natural rubber with waste ground rubber powders have been prepared by mechano-chemical activation method. The influences of particle sizes on both processing performances and mechanical properties have been investigated. The results indicated that: the blends with waste ground rubber powders of smaller particle sizes approached to higher surface tensile and easily mechano-chemical activation, which led to the formation of complete homogenous re-vulcanization cross-linking structure and resulted in the improvements of the whole performances of the final products. The tensile strength, the elongation at break and tear strength approached to the highest value of 20.7MPa, 530% and 33.0 kN/m as the 100mesh waste ground rubber powders were used as the starting materials.


2010 ◽  
Vol 150-151 ◽  
pp. 762-765
Author(s):  
Ji Hu Wang ◽  
Hong Bo Liu ◽  
Shao Guo Wen ◽  
Yan Shen

Attapulgite (AT)/natural rubber (NR)/ styrene-butadiene rubber (SBR) nanocomposites have been prepared after attapulgite was modified by different coupling agent. The treatment of AT caused the adhesion between AT nanorods and the nature rubber/styrene-butadiene rubber was improved, which enhanced the tensile properties of the matrix. The tensile strength of composites attained 15.6 MPa after AT was modified by 3%wt Si-69 coupling with addition of 20 phr.


2014 ◽  
Vol 931-932 ◽  
pp. 68-72
Author(s):  
Komsun Temna ◽  
Nitinart Saetung ◽  
Anuwat Saetung

In this work, the sponge rubbers based on cassava starch masterbatch in latex phase with the difference technique (non-gelatinized and gelatinized cassava starch) were preformed. The cassava starch contents from 0 to 70 phr were also studied. The cure characteristic, mechanical and morphological properties were investigated. It was found that the scorch time and cure time were increased with an increasing of cassava starch contents in both techniques. The mechanical properties i.e., tensile strength, elongation at break and tear strength were decreased with an increasing of cassava starch contents, except 500% modulus. However, the sponge based on gelatinized technique gave the better mechanical properties than that of non-gelatinized cassava starch. The SEM micrographs of sponge NR from gelatinized technique were also able to confirm a good interfacial interaction between hydrophilic cassava starch and hydrophobic NR.


Sign in / Sign up

Export Citation Format

Share Document