scholarly journals Suppressive Effects of Octyl Gallate on Streptococcus mutans Biofilm Formation, Acidogenicity, and Gene Expression

Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3170 ◽  
Author(s):  
Vika Gabe ◽  
Tomas Kacergius ◽  
Saleh Abu-Lafi ◽  
Mouhammad Zeidan ◽  
Basheer Abu-Farich ◽  
...  

The accumulation of biofilm by Streptococcus mutans bacteria on hard tooth tissues leads to dental caries, which remains one of the most prevalent oral diseases. Hence, the development of new antibiofilm agents is of critical importance. The current study reports the results from testing the effectiveness of octyl gallate (C8-OG) against: (1) S. mutans biofilm formation on solid surfaces (polystyrene, glass), (2) acidogenicity, (3) and the expression of biofilm-related genes. The amount of biofilm formed by S. mutans bacteria was evaluated using the colorimetric method and optical profilometry. The pH of the biofilm growth medium was measured with microelectrode. A quantitative reverse transcription-polymerase chain reaction (RT-qPCR) was used to assess the expression of genes encoding glucan binding protein B (gbpB), glucosyltransferases B, -C, -D (gtfB, -C, -D), and the F-ATPase β subunit of the F1 protein (atpD). The results show that C8-OG significantly diminished biofilm formation by exposed S. mutans on solid surfaces and suppressed acidogenicity in a dose-dependent manner, compared to unexposed bacteria (p < 0.05). The C8-OG concentration of 100.24 µM inhibited S. mutans biofilm development on solid surfaces by 100% and prevented a decrease in pH levels by 99%. In addition, the RT-qPCR data demonstrate that the biofilm-producing bacteria treated with C8-OG underwent a significant reduction in gene expression in the case of the four genes under study (gbpB, gtfC, gtfD, and atpD), and there was a slight decrease in expression of the gtfB gene. However, C8-OG treatments did not produce significant expression change compared to the control for the planktonic cells, although there was a significant increase for the atpD gene. Therefore, C8-OG might be a potent antibiofilm and/or anticaries agent for oral formulations that aim to reduce the prevalence of dental caries.

Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3685
Author(s):  
Vika Gabe ◽  
Mouhammad Zeidan ◽  
Tomas Kacergius ◽  
Maksim Bratchikov ◽  
Mizied Falah ◽  
...  

Streptococcus mutans bacterium is implicated in the pathogenesis of dental caries due to the production of biofilm and organic acids from dietary sucrose. Despite the availability of various means of prophylaxis, caries still has a high worldwide prevalence. Therefore, it is important to find new pharmaceuticals to inhibit S. mutans biofilm formation and acidogenicity. The aim of the current study was to evaluate the activity of lauryl gallate (dodecyl gallate) against S. mutans acidogenicity, the expression of biofilm-associated genes, and biofilm development on solid surfaces (polystyrene, glass). The biofilm quantities produced by S. mutans bacteria were assessed using colorimetric and optical profilometry techniques. Acidogenicity was evaluated by measuring the pH of the biofilm growth medium with microelectrode. Assessment of the expression of gene coding for glucan-binding protein B (gbpB), glucosyltranferases B, -C, -D (gtfB, -C, -D), and the F-ATPase β subunit of F1 protein (atpD) was carried out using a quantitative reverse transcription-polymerase chain reaction (RT-qPCR). The results demonstrate the capacity of lauryl gallate to significantly inhibit S. mutans acidogenicity and biofilm development on solid surfaces, in a dose-dependent manner, compared to untreated bacteria (p < 0.05). The highest activity of lauryl gallate occurred at a concentration of 98.98 µM, at which it suppressed biofilm formation by 100% and lowered pH levels by 98%. The effect of lauryl gallate treatment on gene expression changes, as demonstrated by our RT-qPCR data, was limited to the gtfD gene only, was a significant (48%) decrease in gene expression, obtained for the biofilm-producing bacteria, while a 300% increase in fold change for the same gene occurred in the planktonic cells. It is important to note that in previous studies we showed a broader effect of related derivatives. However, a similar magnitude of difference in effects between biofilm and planktonic cells for the atpD gene was obtained after treatment with octyl gallate and reverse magnitude for the same gene after treatment with ethyl gallate. Therefore, to ascertain the possible direct or indirect effects of lauryl gallate, as well as octyl gallate and ethyl gallate, more research is needed to examine the effects on the amount of enzymes and on the enzymatic activity of the products of the affected genes that are involved in the production and maintenance of biofilm by S. mutans.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 529 ◽  
Author(s):  
Vika Gabe ◽  
Tomas Kacergius ◽  
Saleh Abu-Lafi ◽  
Povilas Kalesinskas ◽  
Mahmud Masalha ◽  
...  

This study aimed to test the effectiveness of ethyl gallate (EG) against S. mutans biofilm formation on solid surfaces (polystyrene, glass) and acidogenicity, and to examine the effect on expression of related genes. The biofilm that is formed by S. mutans bacteria was evaluated using colorimetric assay and optical profilometry, while the pH of the biofilm growth medium was measured with microelectrode. The expression of genes encoding glucan binding protein B (gbpB), glucosyltranferases B, -C, -D (gtfB, -C, -D) and F-ATPase (atpD, atpF) was assessed using a quantitative reverse transcription-polymerase chain reaction (RT-qPCR). It was revealed that all of the EG concentrations significantly suppressed S. mutans biofilm build-up on polystyrene and glass surfaces, and inhibited acidogenicity, in a dose-dependent manner, compared to the activity of untreated bacteria (p < 0.05). The highest concentration of EG (3.53 mM) reduced biofilm formation on polystyrene and glass surfaces by 68% and more than 91%, respectively, and prevented a decrease in pH levels by 95%. The RT-qPCR data demonstrate that the biofilm-producing bacteria treated with EG underwent significant gene expression changes involving the gtfC (a 98.6 increase in fold change), gtfB gene (a 47.5 increase in fold change) and the gbpB gene (a 13.8 increase in fold change). However, for the other genes tested (gtfD, atpD and atpF), the EG treatments did not produce significant expression change compared to the control. EG produced significant gene expression change in three genes—gtfC, gtfB, and gbpB; it has the capacity to inhibit S. mutans biofilm formation on solid surfaces (polystyrene, glass), as well as acidogenicity. Therefore, EG might be used as an antibiofilm and/or anticaries agent for oral formulations in order to reduce the prevalence of dental caries.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryota Nomura ◽  
Takahiro Kitamura ◽  
Saaya Matayoshi ◽  
Jumpei Ohata ◽  
Yuto Suehiro ◽  
...  

AbstractSurface pre-reacted glass-ionomer (S-PRG) filler is a bioactive functional glass that releases six different ions. Although several dental materials containing S-PRG filler have been developed, few self-care products containing S-PRG filler have been reported. We investigated the inhibitory effects of PRG gel paste containing S-PRG filler on Streptococcus mutans, a major pathogen of dental caries. PRG gel paste inhibited bacterial growth of S. mutans in a concentration-dependent manner, and all S. mutans were killed in the presence of ≥ 1% PRG gel paste. Additionally, it was difficult for S. mutans to synthesize insoluble glucan from sucrose in the presence of 0.1% PRG gel paste. A biofilm formation model was prepared in which slices of bovine enamel were infected with S. mutans after treatment with or without PRG gel paste. Biofilm formation was inhibited significantly more on the enamel treated with PRG gel paste than on enamel without PRG gel paste (P < 0.001). The inhibitory effects on bacterial growth and biofilm formation were more prominent with PRG gel paste than with S-PRG-free gel paste, suggesting that PRG gel paste may be effective as a self-care product to prevent dental caries induced by S. mutans.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mor Schneider-Rayman ◽  
Doron Steinberg ◽  
Ronit Vogt Sionov ◽  
Michael Friedman ◽  
Miriam Shalish

Abstract Background Streptococcus mutans (S. mutans) plays a major role in the formation of dental caries. The aim of this study was to examine the effect of the green tea polyphenol, epigallocatechin gallate (EGCG), on biofilm formation of S. mutans. Methods Following exposure to increasing concentrations of EGCG, the planktonic growth was measured by optical density and the biofilm biomass was quantified by crystal violet staining. Exopolysaccharides (EPS) production was visualized by confocal scanning laser microscopy, and the bacterial DNA content was determined by quantitative polymerase chain reaction (qPCR). Gene expression of selected genes was analyzed by real time (RT)-qPCR and membrane potential was examined by flow cytometry. Results We observed that EGCG inhibited in a dose-dependent manner both the planktonic growth and the biofilm formation of S. mutans. Significant reduction of S. mutans biofilm formation, DNA content, and EPS production was observed at 2.2–4.4 mg/ml EGCG. EGCG reduced the expression of gtfB, gtfC and ftf genes involved in EPS production, and the nox and sodA genes involved in the protection against oxidative stress. Moreover, EGCG caused an immediate change in membrane potential. Conclusions EGCG, a natural polyphenol, has a significant inhibitory effect on S. mutans dental biofilm formation and EPS production, and thus might be a potential drug in preventing dental caries.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Zahra Rajabi ◽  
Rouha Kermanshahi ◽  
Mohammad Mehdi Soltan Dallal ◽  
Yousef Erfani ◽  
Reza Ranjbar

Background: The potential of Streptococcus mutans for biofilm formation makes it one of the main organisms causing dental caries. Various preventive strategies have been applied to reduce tooth decay. Objectives: In the current study, we aimed to isolate S. mutans bacteriophages from sewage and to investigate their effects on the expression of the genes involved in bacterial biofilm formation in dental caries. Methods: Eighty-one dental plaque samples were collected. Then to isolate and identify S. mutans, bacterial culture media and molecular tests were used. Moreover, the biofilm formation capability of the isolated S. mutans was determined. Also, lytic bacteriophages were isolated from raw urban sewage, and phage morphology was determined by transmission electron microscopy (TEM). Real-time PCR was used to assess the effects of the isolated bacteriophages on the expression of the genes involved in biofilm formation. Results: Overall, 32 (39.5%) samples were positive for the presence of S. mutans. All of the isolates contained the gtfD gene. The frequencies of other genes were as follows: gtfB (17, 53.12%), gtfC (19, 53.37%), SpaP (13, 40.62%), and luxS (23, 17.87%). The isolated S. mutans bacteria presented different ranges of biofilm formation ability. Based on TEM results, two sewage-isolated bacteriophages, belonging to Siphoviridae and Tectiviridae families, were able to prevent biofilm formation up to 97%. Conclusions: Our findings indicate that phage therapy can be an optional way for controlling biofilm development and reducing the colonization of teeth surface by S. mutans.


2021 ◽  
Vol 9 (11) ◽  
pp. 2368
Author(s):  
Qiuxiang Zhang ◽  
Jiaxun Li ◽  
Wenwei Lu ◽  
Jianxin Zhao ◽  
Hao Zhang ◽  
...  

Lactiplantibacillus plantarum CCFM8724 is a probiotic with the potential to prevent dental caries in vitro and in vivo. To explore the effects of this probiotic at inhibiting Streptococcus mutans-Candida albicans mixed-species biofilm and preventing dental caries, multi-omics, including metabolomics and transcriptomics, was used to investigate the regulation of small-molecule metabolism during biofilm formation and the gene expression in the mixed-species biofilm. Metabolomic analysis revealed that some carbohydrates related to biofilm formation, such as sucrose, was detected at lower levels due to the treatment with the L. plantarum supernatant. Some sugar alcohols, such as xylitol and sorbitol, were detected at higher levels, which may have inhibited the growth of S. mutans. In transcriptomic analysis, the expression of the virulence genes of C. albicans, such as those that code agglutinin-like sequence (Als) proteins, was affected. In addition, metabolomics coupled with a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and RNA-seq revealed that the L. plantarum supernatant had an active role in sugar metabolism during the formation of the S. mutans-C. albicans mixed-species biofilm, and the L. plantarum supernatant was also related to carbohydrate utilization, glucan biosynthesis, and mycelium formation. Hence, L. plantarum CCFM8724 decreased the mixed-species biofilm mass from the perspective of gene expression and metabolic reprogramming. Our results provide a rationale for evaluating L. plantarum CCFM8724 as a potential oral probiotic for inhibiting cariogenic pathogen biofilm formation and improving dental caries.


2021 ◽  
Vol 16 (6) ◽  
pp. 1934578X2110196
Author(s):  
Zheng Liu ◽  
Lihua Zhang ◽  
Jincai Wang ◽  
Yanping Li ◽  
Yiqun Chang ◽  
...  

Biofilm formation is considered as a crucial factor in various oral diseases, such as dental caries. The quorum sensing (QS) signaling system was proved to have a crucial role in the microbial dental plaque biofilm formation of Streptococcus mutans ( S. mutans). LuxS was critical to regulating the QS system and survival of the bacterium, and, therefore, compounds which target LuxS may be a potential therapy for dental caries. The binding activities of 37,170 natural compounds to LuxS were virtually screened in this study. Baicalein and paeonol were chosen for further research of the binding mode and ΔG values with LuxS. Both baicalein and paeonol inhibited the biofilm formation without influence on the growth of S. mutans. Baicalein also distinctly reduced the production of both rhamnolipids and acids. The results provide us with a new approach to combat dental caries instead of the traditional use of antibacterial chemicals.


2020 ◽  
Vol 100 (1) ◽  
pp. 82-89
Author(s):  
C.M.A.P. Schuh ◽  
B. Benso ◽  
P.A. Naulin ◽  
N.P. Barrera ◽  
L. Bozec ◽  
...  

Biofilm-mediated oral diseases such as dental caries and periodontal disease remain highly prevalent in populations worldwide. Biofilm formation initiates with the attachment of primary colonizers onto surfaces, and in the context of caries, the adhesion of oral streptococci to dentinal collagen is crucial for biofilm progression. It is known that dentinal collagen suffers from glucose-associated crosslinking as a function of aging or disease; however, the effect of collagen crosslinking on the early adhesion and subsequent biofilm formation of relevant oral streptococci remains unknown. Therefore, the aim of this work was to determine the impact of collagen glycation on the initial adhesion of primary colonizers such as Streptococcus mutans UA159 and Streptococcus sanguinis SK 36, as well as its effect on the early stages of streptococcal biofilm formation in vitro. Type I collagen matrices were crosslinked with either glucose or methylglyoxal. Atomic force microscopy nanocharacterization revealed morphologic and mechanical changes within the collagen matrix as a function of crosslinking, such as a significantly increased elastic modulus in crosslinked fibrils. Increased nanoadhesion forces were observed for S. mutans on crosslinked collagen surfaces as compared with the control, and retraction curves obtained for both streptococcal strains demonstrated nanoscale unbinding behavior consistent with bacterial adhesin-substrate coupling. Overall, glucose-crosslinked substrates specifically promoted the initial adhesion, biofilm formation, and insoluble extracellular polysaccharide production of S. mutans, while methylglyoxal treatment reduced biofilm formation for both strains. Changes in the adhesion behavior and biofilm formation of oral streptococci as a function of collagen glycation could help explain the biofilm dysbiosis seen in older people and patients with diabetes. Further studies are necessary to determine the influence of collagen crosslinking on the balance between acidogenic and nonacidogenic streptococci to aid in the development of novel preventive and therapeutic treatment against dental caries in these patients.


2010 ◽  
Vol 59 (10) ◽  
pp. 1225-1234 ◽  
Author(s):  
H. M. H. N. Bandara ◽  
O. L. T. Lam ◽  
R. M. Watt ◽  
L. J. Jin ◽  
L. P. Samaranayake

The objective of this study was to evaluate the effect of the bacterial endotoxin LPS on Candida biofilm formation in vitro. The effect of the LPS of Pseudomonas aeruginosa, Klebsiella pneumoniae, Serratia marcescens and Salmonella typhimurium on six different species of Candida, comprising Candida albicans ATCC 90028, Candida glabrata ATCC 90030, Candida krusei ATCC 6258, Candida tropicalis ATCC 13803, Candida parapsilosis ATCC 22019 and Candida dubliniensis MYA 646, was studied using a standard biofilm assay. The metabolic activity of in vitro Candida biofilms treated with LPS at 90 min, 24 h and 48 h was quantified by XTT reduction assay. Viable biofilm-forming cells were qualitatively analysed using confocal laser scanning microscopy (CLSM), while scanning electron microscopy (SEM) was employed to visualize the biofilm structure. Initially, adhesion of C. albicans was significantly stimulated by Pseudomonas and Klebsiella LPS. A significant inhibition of Candida adhesion was noted for the following combinations: C. glabrata with Pseudomonas LPS, C. tropicalis with Serratia LPS, and C. glabrata, C. parapsilosis or C. dubliniensis with Salmonella LPS (P<0.05). After 24 h of incubation, a significant stimulation of initial colonization was noted for the following combinations: C. albicans/C. glabrata with Klebsiella LPS, C. glabrata/C. tropicalis/C. krusei with Salmonella LPS. In contrast, a significant inhibition of biofilm formation was observed in C. glabrata/C. dubliniensis/C. krusei with Pseudomonas LPS, C. krusei with Serratia LPS, C. dubliniensis with Klebsiella LPS and C. parapsilosis/C. dubliniensis /C. krusei with Salmonella LPS (P<0.05). On further incubation for 48 h, a significant enhancement of biofilm maturation was noted for the following combinations: C. glabrata/C. tropicalis with Serratia LPS, C. dubliniensis with Klebsiella LPS and C. glabrata with Salmonella LPS, and a significant retardation was noted for C. parapsilosis/C. dubliniensis/C. krusei with Pseudomonas LPS, C. tropicalis with Serratia LPS, C. glabrata/C. parapsilosis/C. dubliniensis with Klebsiella LPS and C. dubliniensis with Salmonella LPS (P<0.05). These findings were confirmed by SEM and CLSM analyses. In general, the inhibition of the biofilm development of LPS-treated Candida spp. was accompanied by a scanty architecture with a reduced numbers of cells compared with the profuse and densely colonized control biofilms. These data are indicative that bacterial LPSs modulate in vitro Candida biofilm formation in a species-specific and time-dependent manner. The clinical and the biological relevance of these findings have yet to be explored.


2018 ◽  
Vol 201 (2) ◽  
Author(s):  
Lin Zeng ◽  
Robert A. Burne

ABSTRACTThe dental caries pathogenStreptococcus mutanscan ferment a variety of sugars to produce organic acids. Exposure ofS. mutansto certain nonmetabolizable carbohydrates, such as xylitol, impairs growth and can cause cell death. Recently, the presence of a sugar-phosphate stress inS. mutanswas demonstrated using a mutant lacking 1-phosphofructokinase (FruK) that accumulates fructose-1-phosphate (F-1-P). Here, we studied an operon inS. mutans,sppRA, which was highly expressed in thefruKmutant. Biochemical characterization of a recombinant SppA protein indicated that it possessed hexose-phosphate phosphohydrolase activity, with preferences for F-1-P and, to a lesser degree, fructose-6-phosphate (F-6-P). SppA activity was stimulated by Mg2+and Mn2+but inhibited by NaF. SppR, a DeoR family regulator, repressed the expression of thesppRAoperon to minimum levels in the absence of the fructose-derived metabolite F-1-P and likely also F-6-P. The accumulation of F-1-P, as a result of growth on fructose, not only inducedsppAexpression, but it significantly altered biofilm maturation through increased cell lysis and enhanced extracellular DNA release. Constitutive expression ofsppA, via a plasmid or by deletingsppR, greatly alleviated fructose-induced stress in afruKmutant, enhanced resistance to xylitol, and reversed the effects of fructose on biofilm formation. Finally, by identifying three additional putative phosphatases that are capable of promoting sugar-phosphate tolerance, we show thatS. mutansis capable of mounting a sugar-phosphate stress response by modulating the levels of certain glycolytic intermediates, functions that are interconnected with the ability of the organism to manifest key virulence behaviors.IMPORTANCEStreptococcus mutansis a major etiologic agent for dental caries, primarily due to its ability to form biofilms on the tooth surface and to convert carbohydrates into organic acids. We have discovered a two-gene operon inS. mutansthat regulates fructose metabolism by controlling the levels of fructose-1-phosphate, a potential signaling compound that affects bacterial behaviors. With fructose becoming increasingly common and abundant in the human diet, we reveal the ways that fructose may alter bacterial development, stress tolerance, and microbial ecology in the oral cavity to promote oral diseases.


Sign in / Sign up

Export Citation Format

Share Document