scholarly journals Novel Insights into Dietary Phytosterol Utilization and Its Fate in Honey Bees (Apis mellifera L.)

Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 571
Author(s):  
Priyadarshini Chakrabarti ◽  
Hannah M. Lucas ◽  
Ramesh R. Sagili

Poor nutrition is an important factor in global bee population declines. A significant gap in knowledge persists regarding the role of various nutrients (especially micronutrients) in honey bees. Sterols are essential micronutrients in insect diets and play a physiologically vital role as precursors of important molting hormones and building blocks of cellular membranes. Sterol requirements and metabolism in honey bees are poorly understood. Among all pollen sterols, 24-methylenecholesterol is considered the key phytosterol required by honey bees. Nurse bees assimilate this sterol from dietary sources and store it in their tissues as endogenous sterol, to be transferred to the growing larvae through brood food. This study examined the duration of replacement of such endogenous sterols in honey bees. The dietary 13C-labeled isotopomer of 24-methylenecholesterol added to artificial bee diet showed differential, progressive in vivo assimilation across various honey bee tissues. Significantly higher survival, diet consumption, head protein content and abdominal lipid content were observed in the dietary sterol-supplemented group than in the control group. These findings provide novel insights into phytosterol utilization and temporal pattern of endogenous 24-methylenecholesterol replacement in honey bees.

2019 ◽  
Vol 113 (3) ◽  
pp. 176-182 ◽  
Author(s):  
Priyadarshini Chakrabarti ◽  
Hannah M Lucas ◽  
Ramesh R Sagili

Abstract Although poor nutrition is cited as one of the crucial factors in global pollinator decline, the requirements and role of several important nutrients (especially micronutrients) in honey bees are not well understood. Micronutrients, viz. phytosterols, play a physiologically vital role in insects as precursors of important molting hormones and building blocks of cellular membranes. There is a gap in comprehensive understanding of the impacts of dietary sterols on honey bee physiology. In the present study, we investigated the role of 24-methylenecholesterol—a key phytosterol—in honey bee nutritional physiology. Artificial diets with varying concentrations of 24-methylenecholesterol (0%, 0.1%. 0.25%, 0.5%, 0.75%, and 1% dry diet weight) were formulated and fed to honey bees in a laboratory cage experiment. Survival, diet consumption, head protein content, and abdominal lipid contents were significantly higher in dietary sterol-supplemented bees. Our findings provide additional insights regarding the role of this important sterol in honey bee nutritional physiology. The insights gleaned from this study could also advance the understanding of sterol metabolism and regulation in other bee species that are dependent on pollen for sterols, and assist in formulation of a more complete artificial diet for honey bees (Apis mellifera Linnaeus, 1758) (Hymenoptera: Apidae).


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Dawei Chen ◽  
Zhenguo Zhao ◽  
Lu Chen ◽  
Qinghua Li ◽  
Jixue Zou ◽  
...  

AbstractEmerging evidence has demonstrated that alternative splicing has a vital role in regulating protein function, but how alternative splicing factors can be regulated remains unclear. We showed that the PPM1G, a protein phosphatase, regulated the phosphorylation of SRSF3 in hepatocellular carcinoma (HCC) and contributed to the proliferation, invasion, and metastasis of HCC. PPM1G was highly expressed in HCC tissues compared to adjacent normal tissues, and higher levels of PPM1G were observed in adverse staged HCCs. The higher levels of PPM1G were highly correlated with poor prognosis, which was further validated in the TCGA cohort. The knockdown of PPM1G inhibited the cell growth and invasion of HCC cell lines. Further studies showed that the knockdown of PPM1G inhibited tumor growth in vivo. The mechanistic analysis showed that the PPM1G interacted with proteins related to alternative splicing, including SRSF3. Overexpression of PPM1G promoted the dephosphorylation of SRSF3 and changed the alternative splicing patterns of genes related to the cell cycle, the transcriptional regulation in HCC cells. In addition, we also demonstrated that the promoter of PPM1G was activated by multiple transcription factors and co-activators, including MYC/MAX and EP300, MED1, and ELF1. Our study highlighted the essential role of PPM1G in HCC and shed new light on unveiling the regulation of alternative splicing in malignant transformation.


2021 ◽  
Vol 9 (2) ◽  
pp. e001364
Author(s):  
Yan Zhang ◽  
Hui Yang ◽  
Jun Zhao ◽  
Ping Wan ◽  
Ye Hu ◽  
...  

BackgroundThe activation of tumor-associated macrophages (TAMs) facilitates the progression of gastric cancer (GC). Cell metabolism reprogramming has been shown to play a vital role in the polarization of TAMs. However, the role of methionine metabolism in function of TAMs remains to be explored.MethodsMonocytes/macrophages were isolated from peripheral blood, tumor tissues or normal tissues from healthy donors or patients with GC. The role of methionine metabolism in the activation of TAMs was evaluated with both in vivo analyses and in vitro experiments. Pharmacological inhibition of the methionine cycle and modulation of key metabolic genes was employed, where molecular and biological analyses were performed.ResultsTAMs have increased methionine cycle activity that are mainly attributed to elevated methionine adenosyltransferase II alpha (MAT2A) levels. MAT2A modulates the activation and maintenance of the phenotype of TAMs and mediates the upregulation of RIP1 by increasing the histone H3K4 methylation (H3K4me3) at its promoter regions.ConclusionsOur data cast light on a novel mechanism by which methionine metabolism regulates the anti-inflammatory functions of monocytes in GC. MAT2A might be a potential therapeutic target for cancer cells as well as TAMs in GC.


2005 ◽  
Vol 288 (3) ◽  
pp. H1359-H1366 ◽  
Author(s):  
Cherry Ballard-Croft ◽  
Gentian Kristo ◽  
Yukihiro Yoshimura ◽  
Easton Reid ◽  
Byron J. Keith ◽  
...  

Although acute adenosine preconditioning (PC) is well established, the signaling pathways mediating this cardioprotection remain unclear. Because adenosine receptor agonists activate p38 MAPK and this kinase has been implicated in ischemic and pharmacological PC, the purpose of this study was to determine the role of p38 MAPK in acute adenosine receptor PC. The role of p38 MAPK activation in discrete subcellular compartments during ischemia-reperfusion was also determined. The following groups were used in an in vivo rat ischemia-reperfusion model: 1) control (10% DMSO iv), 2) the A1/A2a adenosine receptor AMP-579 (50 μg/kg iv), 3) AMP-579 + the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 100 μg/kg iv), 4) AMP-579 + the p38 MAPK inhibitor SB-203580 (1 mg/kg iv), and 5) SB-203580 alone. p38 MAPK activation was measured by Western blot analysis in cytosolic, mitochondrial, membrane, and nuclear/myofilament fractions obtained from hearts at preischemic, ischemic, and reperfusion time points. A significant reduction in infarct size was observed with AMP-579 PC, an effect blocked by DPCPX or SB-203580 pretreatment. AMP-579 treatment was associated with a significant increase in p38 MAPK activation in the nuclear/myofilament fraction before ischemia, whereas no activation of this kinase occurred during ischemia or reperfusion. In contrast, p38 MAPK was activated in the mitochondrial fraction by ischemia and in the cytosolic, mitochondrial, and membrane fractions by reperfusion in the control group. SB-203580 blocked the AMP-579-induced increase in phosphorylation of the downstream p38 substrate activating transcription factor-2. These results suggest a role for p38 MAPK activation in discrete subcellular compartments in acute adenosine A1 receptor PC.


2021 ◽  
Author(s):  
◽  
Sarah Bradbury

<p>Rationale: The profile of acquisition for MDMA self-administration differs from that of amphetamine and cocaine self-administration in that fewer rats meet an acquisition criterion and the latency to acquisition is longer. These characteristics of MDMA self-administration may be because it preferentially stimulates serotonin (5HT) release whereas self-administration has generally been attributed to enhanced dopamine (DA) neurotransmission. Because 5HTergic agonists are not self-administered and increased synaptic 5HT decreased self-administration of other drugs, MDMA self-administration may be initially inhibited by the pronounced 5HT response. Accordingly, the acquisition of MDMA self-administration might proceed as a result of deficits in 5HT neurotransmission and a corresponding disinhibition of DA neurotransmission.  Objective: The primary objective was to determine the role of 5HT in the acquisition and maintenance of MDMA self-administration.  Methods: MDMA-induced increases of extracellular 5HT and DA and their primary metabolites were measured in the DA terminal regions of the nucleus accumbens (NAc) using in vivo microdialysis, prior to the commencement of MDMA self-administration. The relationship between MDMA-induced increases of neurotransmitter levels and the acquisition of MDMA self-administration was assessed. A subsequent study depleted brain 5HT by administering the neurotoxin, 5,7 – DHT, or vehicle into the lateral ventricle of the left hemisphere, prior to the commencement of MDMA self-administration. The proportion of subjects that acquired MDMA self-administration and the latency to acquire MDMA self-administration was compared for the two groups. In order to determine effects of MDMA self-administration on 5HT and DA responses, behaviours that reflect 5HT and/or DA neurotransmission were measured 5 or 14 days after self-administration of 165 mg/kg MDMA, or 14 days after vehicle self-administration. These time periods were chosen because they reflect a period of 5HT deficits (5 days) and recovery (14 days). Finally, the effect of abstinence on MDMA self-administration was measured.  Results: The MDMA-induced increase of extracellular 5HT was significantly lower for the group that subsequently acquired MDMA self-administration but the MDMA-induced increase in DA was not different from the group that failed to acquire self-administration. 5, 7-DHT administration significantly decreased tissue levels of 5HT, but not DA. MDMA self-administration was facilitated by the lesion; 100% of the lesion group acquired MDMA self-administration, whereas only 50% of the control group acquired self-administration. Five days following the last MDMA self-administration session, DAergic behaviours were enhanced and 5HTergic behaviours were reduced relative to the control group. These differences in 5HTergic mediated behaviours were not apparent 14 days after self-administration but the DAergic behaviours remained elevated. The pattern of self-administration did not differ as a function of the length of the abstinence period.  Conclusions: The variability in acquisition of MDMA self-administration was related to the magnitude of the 5HT response evoked by initial exposure to MDMA. These findings suggested that predisposing differences in the 5HT response might explain differences in the variability in acquisition of MDMA self-administration. The negative impact of 5HT on the acquisition of MDMA self-administration was clearly demonstrated following a 5, 7-DHT lesion. Thus, 5HT limits the development of MDMA self-administration. With repeated exposure to self-administered MDMA, behavioural responses indicative of 5HT activation were reduced whereas behavioural indices of DA activation were increased. The maintenance of MDMA self-administration was comparable regardless of whether there was a forced abstinence period or not. These data are consistent with the hypotheses that 5HT is inhibitory to the acquisition, but not the maintenance, of MDMA self-administration. Rather, the maintenance of self-administration might reflect sensitised DA responses that became apparent following repeated exposure.</p>


2021 ◽  
Vol 8 ◽  
Author(s):  
Yilu Zhou ◽  
Weimin Tao ◽  
Fuyi Shen ◽  
Weijia Du ◽  
Zhendong Xu ◽  
...  

Neutrophils play a vital role in the formation of arterial, venous and cancer-related thrombosis. Recent studies have shown that in a process known as NETosis, neutrophils release proteins and enzymes complexed to DNA fibers, collectively called neutrophil extracellular traps (NETs). Although NETs were originally described as a way for the host to capture and kill bacteria, current knowledge indicates that NETs also play an important role in thrombosis. According to recent studies, the destruction of vascular microenvironmental homeostasis and excessive NET formation lead to pathological thrombosis. In vitro experiments have found that NETs provide skeletal support for platelets, red blood cells and procoagulant molecules to promote thrombosis. The protein components contained in NETs activate the endogenous coagulation pathway to promote thrombosis. Therefore, NETs play an important role in the formation of arterial thrombosis, venous thrombosis and cancer-related thrombosis. This review will systematically summarize and explain the study of NETs in thrombosis in animal models and in vivo experiments to provide new targets for thrombosis prevention and treatment.


Author(s):  
Asmaa Nabil-Adam ◽  
Mohamed A. Shreadah

Background: This study aimed to investigate the potential bioactivity and the ameliorative role of Galaxaura oblongata (G. oblongata) against LPS-induced toxicity by using hematological parameters. Objective: It is aimed also to examine its protective effect using the immunohistochemistry of liver and lungs as biomarkers in male BALB/C albino mice. Materials and Methods: the current study carried out using different in-vitro and in-vivo assays such as phytochemical, antioxidants, anti-inflammatory for in-vitro where the hematological and immunohistochemistry for lung and liver were investigated in vivo. Results: There are no previous studies were performed to investigate the in vivo and in vitro effects of the G. oblongata extracts as antioxidant and anti-inflammatory due to their rareness compared to other red algae. LPS treated mice revealed a significant decrease in total number of WBCs, RBCs, platelets, and HGB%, MPV, MCV and MCHC compared to the control group. On contrast, the HCT and MCHC were increased in the induction group which was treated with LPS compared to the control group. Furthermore, the immunohistochemistry results of the present study revealed the protective effect of G. oblongata compared to the induction group. G. oblongata can be used as protective marine natural products against the toxicity induced by LPS. Conclusion: It exhibited a significant ameliorative role against the alterations in the hematological parameters and immunohistochemistry of liver and lungs, and helps to reduce as well as coordinate the acute inflammations caused by TNF.


Author(s):  
Kowsigan Mohan ◽  
P. Balasubramanie Palanisamy ◽  
G.R. Kanagachidambaresan ◽  
Siddharth Rajesh ◽  
Sneha Narendran

This chapter describes how security plays a vital role in cloud computing, as the name itself specifies the data can be stored from any place and can be owned by anyone. Even though the cloud offers many benefits such as flexibility, scalability and agility, security issues are still backlog the cloud infrastructure. Much research is being done on cloud security equal to the scheduling problems in the cloud environment. The customers under the cloud providers are very concerned about their data, which has been stored in the cloud environment. In this regard, it is essential for a cloud provider to implement some powerful tools for security, to provide a secure cloud infrastructure to the customers. Generally speaking, there are some foundational needs to be attained and some actions to be combined to ensure data security in both cloud, as well as, non-cloud infrastructure. This book chapter concentrates only on the security issues, security measures, security mechanisms, and security tools of the cloud environment.


2019 ◽  
Vol 12 (576) ◽  
pp. eaav2060 ◽  
Author(s):  
Soichiro Yoshikawa ◽  
Masatsugu Oh-hora ◽  
Ryota Hashimoto ◽  
Toshihisa Nagao ◽  
Louis Peters ◽  
...  

Basophils have nonredundant roles in various immune responses that require Ca2+influx. Here, we examined the role of two Ca2+sensors, stromal interaction molecule 1 and 2 (STIM1 and STIM2), in basophil activation. We found that loss of STIM1, but not STIM2, impaired basophil IL-4 production after stimulation with immunoglobulin E (IgE)–containing immune complexes. In contrast, when basophils were stimulated with IL-3, loss of STIM2, but not STIM1, reduced basophil IL-4 production. This difference in STIM proteins was associated with distinct time courses of Ca2+influx and transcription of theIl4gene that were elicited by each stimulus. Similarly, basophil-specific STIM1 expression was required for IgE-driven chronic allergic inflammation in vivo, whereas STIM2 was required for IL-4 production after combined IL-3 and IL-33 treatment in mice. These data indicate that STIM1 and STIM2 have differential roles in the production of IL-4, which are stimulus dependent. Furthermore, these results illustrate the vital role of STIM2 in basophils, which is often considered to be less important than STIM1.


Author(s):  
Nahed A Hussien ◽  
Hanan R. H. Mohamed

Objective: Cobalt nanoparticles (NPs), especially cobalt oxide NPs (Co3O4 NPs) are attracting unique shaped NPs that are used in different biomedical applications and medicine. Different in vitro studies report their toxic and carcinogenic effect but limited in vivo studies were present on its genotoxic potential. The present study was aimed to evaluate the genotoxic potential of Co3O4 NPs on bone marrow cells and sperms and the protective role of omega-3 in male albino mice.Methods: Animals were segregated into four groups that were orally treated for 3 consecutive days, Group 1: Negative control; Group 2: Omega-3 (250 mg/kg); Group 3: Co3O4 NPs (20 mg/kg); and Group 4: Combined group (250 mg/kg Omega-3 and Co3O4 NPs 20 mg/kg).Results: The present results show that Co3O4 NPs administration significantly increased number of micronucleated polychromatic erythrocytes (PCEs)/1000 PCEs, sperm abnormalities, and DNA damage, significantly decreased sperm motility and concentration in comparison to negative control group. However, Omega-3 administration in the combined group modulates the genotoxic potential of Co3O4 NPs in comparison to Co3O4 NPs group.Conclusion: The present study reports the genotoxic potential of Co3O4 NPs in vivo and assesses the protective role of Omega-3 administration due to its antioxidant effect.


Sign in / Sign up

Export Citation Format

Share Document