scholarly journals Metabolite Profiles of Red and Yellow Watermelon (Citrullus lanatus) Cultivars Using a 1H-NMR Metabolomics Approach

Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3235 ◽  
Author(s):  
Fadzil Sulaiman ◽  
Amalina Ahmad Azam ◽  
Muhammad Safwan Ahamad Bustamam ◽  
Sharida Fakurazi ◽  
Faridah Abas ◽  
...  

Watermelon, a widely commercialized fruit, is famous for its thirst-quenching property. The broad range of cultivars, which give rise to distinct color and taste, can be attributed to the differences in their chemical profile, especially that of the carotenoids and volatile compounds. In order to understand this distribution properly, water extracts of red and yellow watermelon pulps with predominantly polar metabolites were subjected to proton nuclear magnetic resonance (1H-NMR) analysis. Deuterium oxide (D2O) and deuterated chloroform (CDCl3) solvents were used to capture both polar and non-polar metabolites from the same sample. Thirty-six metabolites, of which six are carotenoids, were identified from the extracts. The clustering of the compounds was determined using unsupervised principal component analysis (PCA) and further grouping was achieved using supervised orthogonal partial least squares discriminant analysis (OPLS-DA). The presence of lycopene, β-carotene, lutein, and prolycopene in the red watermelon plays an important role in its differentiation from the yellow cultivar. A marked difference in metabolite distribution was observed between the NMR solvents used as evidenced from the PCA model. OPLS-DA and relative quantification of the metabolites, on the other hand, helped in uncovering the discriminating metabolites of the red and yellow watermelon cultivars from the same solvent system.

2018 ◽  
Vol 19 (11) ◽  
pp. 3288 ◽  
Author(s):  
Panteleimon Takis ◽  
Antonio Taddei ◽  
Riccardo Pini ◽  
Stefano Grifoni ◽  
Francesca Tarantini ◽  
...  

Precision medicine may significantly contribute to rapid disease diagnosis and targeted therapy, but relies on the availability of detailed, subject specific, clinical information. Proton nuclear magnetic resonance (1H–NMR) spectroscopy of body fluids can extract individual metabolic fingerprints. Herein, we studied 64 patients admitted to the Florence main hospital emergency room with severe abdominal pain. A blood sample was drawn from each patient at admission, and the corresponding sera underwent 1H–NMR metabolomics fingerprinting. Unsupervised Principal Component Analysis (PCA) analysis showed a significant discrimination between a group of patients with symptoms of upper abdominal pain and a second group consisting of patients with diffuse abdominal/intestinal pain. Prompted by this observation, supervised statistical analysis (Orthogonal Partial Least Squares–Discriminant Analysis (OPLS-DA)) showed a very good discrimination (>90%) between the two groups of symptoms. This is a surprising finding, given that neither of the two symptoms points directly to a specific disease among those studied here. Actually herein, upper abdominal pain may result from either symptomatic gallstones, cholecystitis, or pancreatitis, while diffuse abdominal/intestinal pain may result from either intestinal ischemia, strangulated obstruction, or mechanical obstruction. Although limited by the small number of samples from each of these six conditions, discrimination of these diseases was attempted. In the first symptom group, >70% discrimination accuracy was obtained among symptomatic gallstones, pancreatitis, and cholecystitis, while for the second symptom group >85% classification accuracy was obtained for intestinal ischemia, strangulated obstruction, and mechanical obstruction. No single metabolite stands up as a possible biomarker for any of these diseases, while the contribution of the whole 1H–NMR serum fingerprint seems to be a promising candidate, to be confirmed on larger cohorts, as a first-line discriminator for these diseases.


2021 ◽  
Vol 44 (2) ◽  
pp. 229-239
Author(s):  
S. Settachaimongkon ◽  
N. Wannakajeepiboon ◽  
P. Arunpunporn ◽  
W. Mekboonsonglarp ◽  
D. Makarapong

The objectives of this study were to characterize and compare non-volatile polar metabolite profiles of bovine colostrum, collected within 1 h and at 72 h after parturition, from crossbred Holstein cows raised in northeastern Thailand. The colostrum serum was characterized and compared using a non-targeted proton nuclear magnetic resonance (1H-NMR) technique combined with chemometric analysis. Results demonstrated that the main effect of post-parturition time provided a significant impact on the physical properties and major chemical constituents of colostrum, while the influence of farm origin and sampling month were likely undetectable. The 1H-NMR technique enabled to identify 45 non-volatile polar metabolites in the samples. Partial least-squares-discriminant analysis (PLS-DA) allowed discrimination of colostrum metabolome not only according to different times after parturition, but also the origins of the farm as well as sampling months. Differential metabolites were statistically identified as potential biomarkers accountable for the discrimination. Besides basic nutritive compounds (amino acids and sugars), several bioactive metabolites such as ascorbate, creatine, carnitine, choline, acetylcarnitine, N-acetylglucosamine, ornithine, orotate, and UPD-glucose could be successfully elucidated. Our finding reveals the application of non-targeted 1H-NMR metabolomics as an effective tool to assess the biomolecular profiles of bovine colostrum and their essential dynamics during the first three days after parturition.


2008 ◽  
Vol 35 (3) ◽  
pp. 213 ◽  
Author(s):  
Oula Ghannoum ◽  
Matthew J. Paul ◽  
Jane L. Ward ◽  
Michael H. Beale ◽  
Delia-Irina Corol ◽  
...  

Phosphorus (P) is an important determinant of plant productivity, particularly in the tropical grasslands of Australia, which contain both C3 and C4 species. Few studies have compared the responses of such species to P deficiency. Previous work led us to hypothesise that C3 photosynthesis and the three subtypes of C4 photosynthesis have different sensitivities to P deficiency. To examine their dynamic response to P deficiency in more detail, four taxonomically related tropical grasses (Panicum laxum (C3) and Panicum coloratum, Cenchrus ciliaris and Panicum maximum belonging to the C4 subtypes NAD-ME, NADP-ME and PCK, respectively) were grown under contrasting P supplies, including P withdrawal from the growing medium. Changes in photosynthesis and growth were compared with leaf carbohydrate contents and metabolic fingerprints obtained using high-resolution proton nuclear magnetic resonance (1H-NMR). The response of CO2 assimilation rates to leaf contents of inorganic phosphate ([Pi]) was linear in the C3 grass, but asymptotic for the three C4 grasses. Relative growth rate was affected most by low P in the C3 species and was correlated with the leaf content of glucose 6-phosphate more than with carbohydrates. Principal component analysis of the 1H-NMR spectra revealed distinctive profiles of carbohydrates and amino acids for the four species. Overall, the data showed that photosynthesis of the three C4 subtypes behaved similarly. Compared with the C3 counterpart, photosynthesis of the three C4 grasses had a higher P use efficiency and lower Pi requirement, and responded to a narrower range of [Pi]. Although each of the four grass species showed distinctive 1H-NMR fingerprints, there were no differences in response that could be attributed to the C4 subtypes.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1984
Author(s):  
Rocío Barreiro ◽  
Raquel Rodríguez-Solana ◽  
Leocadio Alonso ◽  
Carmen Salinero ◽  
José Ignacio López Sánchez ◽  
...  

Camellia genus (Theaceae) is comprised of world famous ornamental flowering plants. C. japonica L. and C. sasanqua Thunb are the most cultivated species due to their good adaptation. The commercial interest in this plant linked to its seed oil increased in the last few years due to its health attributes, which significantly depend on different aspects such as species and environmental conditions. Therefore, it is essential to develop fast and reliable methods to distinguish between different varieties and ensure the quality of Camellia seed oils. The present work explores the study of Camellia seed oils by species and location. Two standardized gas chromatography methods were applied and compared with that of data obtained from proton nuclear magnetic resonance spectroscopy (1H-NMR) for fatty acids profiling. The principal component analysis indicated that the proposed 1H-NMR methodology can be quickly and reliably applied to separate specific Camellia species, which could be extended to other species in future works.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3289
Author(s):  
Antoni Delpino-Rius ◽  
Jordi Eras ◽  
Ferran Gatius ◽  
Mercè Balcells ◽  
Ramon Canela-Garayoa

Here we authenticated single-varietal peach purees and pear juices on the basis of primary metabolite and phenolic compound analysis by Proton Nuclear Magnetic Resonance (1H-NMR) and Ultra Performance Liquid Chromatography coupled to Photodiode Array and Tandem Mass Spectrometry (UPLC-PDA-MS/MS), respectively. After suitable preprocessing, the 1H-NMR and chromatographic data were evaluated by principal component analysis (PCA). The PCA combining data from primary metabolites and phenolic compounds allowed the separation of the clusters in all cases, allowing discrimination of processed and unprocessed peach purees, both separately and pooled. The PCA of primary metabolites allowed the cluster separation of purees of distinct peach varieties but not between processed and non-processed purees. The PCA of phenolic compounds allowed better cluster separation than of primary metabolites. For pear juices, both PCA approaches allowed satisfactory discrimination of Alejandrina, Conference, and Blanquilla cultivars. These approaches may help to better control cultivar authenticity in fruit products. It could therefore contribute to the development of a process to achieve products characterized by a quality characteristic of a given cultivar.


Metabolites ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 656
Author(s):  
Rachelle Bester ◽  
Zinandré Stander ◽  
Shayne Mason ◽  
Karen M. Keane ◽  
Glyn Howatson ◽  
...  

Although physical activity is a health-promoting, popular global pastime, regular engagement in strenuous exercises, such as long-distance endurance running races, has been associated with a variety of detrimental physiological and immunological health effects. The resulting altered physiological state has previously been associated with fluctuations in various key metabolite concentrations; however, limited literature exists pertaining to the global/holistic metabolic changes that are induced by such. This investigation subsequently aims at elucidating the metabolic changes induced by a marathon by employing an untargeted proton nuclear magnetic resonance (1H-NMR) spectrometry metabolomics approach. A principal component analysis (PCA) plot revealed a natural differentiation between pre- and post-marathon metabolic profiles of the 30-athlete cohort, where 17 metabolite fluctuations were deemed to be statistically significant. These included reduced concentrations of various amino acids (AA) along with elevated concentrations of ketone bodies, glycolysis, tricarboxylic acid (TCA) cycle, and AA catabolism intermediates. Moreover, elevated concentrations of creatinine and creatine in the post-marathon group supports previous findings of marathon-induced muscle damage. Collectively, the results of this investigation characterize the strenuous metabolic load induced by a marathon and the consequential regulation of main energy-producing pathways to accommodate this, and a better description of the cause of the physiological changes seen after the completion of a marathon.


Holzforschung ◽  
2019 ◽  
Vol 73 (5) ◽  
pp. 423-434
Author(s):  
Nai-Wen Tsao ◽  
Shin-Hung Pan ◽  
Jeng-Der Chung ◽  
Yueh-Hsiung Kuo ◽  
Sheng-Yang Wang ◽  
...  

Abstract Lignans are major bioactive secondary metabolites, which are also formed in the heartwood (hW) of Taiwania (Taiwania cryptomerioides). Their biosynthesis pathways are complex and involve many enzymes and intermediates. To evaluate the extent of the genetic components leading to the variety of lignans in Taiwania hW, 35 Taiwania genotypes of four provenances were surveyed using the proton nuclear magnetic resonance (1H-NMR) and liquid chromatography-mass spectrometry (LC-MS) analyses. The metabolite profiles were statistically evaluated by principal component analysis (PCA) and the general linear model (GLM). The broad-sense heritability (H2) was further evaluated by linear mixed model (LMM) analysis. It was demonstrated that the genetic factor is the major contributor to the abundance of lignans, though the environmental factor also has some effect on it. Among the metabolites detected by 1H-NMR, lignans were the major compounds that exhibited high a H2 (0.52–0.82), which was further verified by LC-MS. The conclusion is that 1H-NMR spectroscopy is suitable for quick screenings, predictions and semi-quantitation of lignans. The high H2 is also indicative of the lignan abundances as traits that can be genetically modified to achieve a significant wood quality improvement.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2510
Author(s):  
Muhamad Faris Osman ◽  
Soo Yee Lee ◽  
Shahrul Razid Sarbini ◽  
Siti Munirah Mohd Faudzi ◽  
Shamsul Khamis ◽  
...  

The differences in pungency of “sirih” imply the probable occurrence of several variants of Piper betle L. in Malaysia. However, the metabolite profiles underlying the pungency of the different variants remain a subject of further research. The differences in metabolite profiles of selected Malaysian P. betle variants were thus investigated; specifically, the leaf aqueous methanolic extracts and essential oils were analyzed via 1H-NMR and GC-MS metabolomics, respectively. Principal component analysis (PCA) of the 1H-NMR spectral data showed quantitative differences in the metabolite profiles of “sirih melayu” and “sirih india” and revealed an ambiguous group of samples with low acetic acid content, which was identified as Piper rubro-venosum hort. ex Rodigas based on DNA sequences of the internal transcribed spacer 2 (ITS2) region. The finding was supported by PCA of two GC-MS datasets of P. betle samples obtained from several states in Peninsular Malaysia, which displayed clustering of the samples into “sirih melayu” and “sirih india” groups. Higher abundance of chavicol acetate was consistently found to be characteristic of “sirih melayu”. The present research has provided preliminary evidence supporting the notion of occurrence of two P. betle variants in Malaysia based on chemical profiles, which may be related to the different genders of P. betle.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 374
Author(s):  
Beatriz Jiménez ◽  
Mei Ran Abellona U ◽  
Panagiotis Drymousis ◽  
Michael Kyriakides ◽  
Ashley K. Clift ◽  
...  

The incidence of neuroendocrine neoplasms (NEN) is increasing, but established biomarkers have poor diagnostic and prognostic accuracy. Here, we aim to define the systemic metabolic consequences of NEN and to establish the diagnostic utility of proton nuclear magnetic resonance spectroscopy (1H-NMR) for NEN in a prospective cohort of patients through a single-centre, prospective controlled observational study. Urine samples of 34 treatment-naïve NEN patients (median age: 59.3 years, range: 36–85): 18 had pancreatic (Pan) NEN, of which seven were functioning; 16 had small bowel (SB) NEN; 20 age- and sex-matched healthy control individuals were analysed using a 600 MHz Bruker 1H-NMR spectrometer. Orthogonal partial-least-squares-discriminant analysis models were able to discriminate both PanNEN and SBNEN patients from healthy control (Healthy vs. PanNEN: AUC = 0.90, Healthy vs. SBNEN: AUC = 0.90). Secondary metabolites of tryptophan, such as trigonelline and a niacin-related metabolite were also identified to be universally decreased in NEN patients, while upstream metabolites, such as kynurenine, were elevated in SBNEN. Hippurate, a gut-derived metabolite, was reduced in all patients, whereas other gut microbial co-metabolites, trimethylamine-N-oxide, 4-hydroxyphenylacetate and phenylacetylglutamine, were elevated in those with SBNEN. These findings suggest the existence of a new systems-based neuroendocrine circuit, regulated in part by cancer metabolism, neuroendocrine signalling molecules and gut microbial co-metabolism. Metabonomic profiling of NEN has diagnostic potential and could be used for discovering biomarkers for these tumours. These preliminary data require confirmation in a larger cohort.


Sign in / Sign up

Export Citation Format

Share Document